Tuesday, February 07, 2012

AdS/cond-mat

Last week, Subir Sachdev came to Munich to give three Arnold Sommerfeld Lectures. I want to take this opportunity to write about a subject that has attracted a lot of attention in recent years, namely applying AdS/CFT techniques to condensed matter systems like trying to write gravity duals for D-wave superconducturs or strange metals (it's surprisingly hard to find a good link for this keyword).

My attitude towards this attempt has somewhat changed from "this will never work" to "it's probably as good as anything else" and in this post I will explain why I think this. I should mention as well that Sean Hartnoll has been essential in this phase transition of my mind.

Let me start by sketching (actually: caricaturing) what I am talking about. You want to understand some material, typically the electrons in a horribly complicated lattice like bismuth strontium calcium copper oxide, or BSCCO. To this end, you come up with a five dimensional theory of gravity coupled to your favorite list of other fields (gauge fields, scalars with potentials, you name it) and place that in an anti-de-Sitter background (or better, for finite temperature, in an asymptotically anti-de-Sitter black hole). Now, you compute solutions with prescribed behavior at infinity and interpret these via Witten's prescription as correlators in your condensed matter theory. For example you can read off Green functions and (frequency dependent) conductivities, densities of state.

How can this ever work, how are you supposed to guess the correct field content (there is no D-brane/string description anywhere near that could help you out) and how can you ever be sure you got it right?

The answer is you cannot but it does not matter. It does not matter as it does not matter elsewhere in condensed matter physics. To clarify this, we have to be clear about what it means for a condensed matter theorist to "understand" a system. Expressed in our high energy lingo, most of the time, the "microscopic theory" is obvious: It is given by the Schrödinger equation for $10^23$ electrons plus as similar number of noclei feeling the Coulomb potential of the nuclei and interacting themselves with Coulomb repulsion. There is nothing more to be known about this. Except that this is obviously not what we want. These are far too many particles to worry about and, what is more important, we are interested in the behavior at much much lower energy scales and longer wave lengths, at which all the details of the lattice structure are smoothed out and we see only the effect of a few electrons close to the Fermi surface. As an estimate, one should compare the typical energy scale of the Coulomb interactions, the binding energies of the electrons to the nucleus (Z times 13.6 eV) or in terms of temperature (where putting in the constants equates 1eV to about 10,000K) to the milli-eV binding energy of Cooper pairs or the typical temperature where superconductivity plays a role.

In the language of the renormalization group, the Coulomb interactions are the UV theory but we want to understand the effective theory that this flows to in the IR. The convenient thing about such effective theories is that they do not have to be unique: All we want is a simple to understand theory (in which we can compute many quantities that we would like to know) that is in the same universality class as the system we started from. Differences in relevant operators do not matter (at least to leading order).

Surprisingly often, one can find free theories or weakly (and thus almost free) theories that can act as the effective theory we are looking for. BCS is a famous example, but Landau's Fermi Liquid Theory is another: There the idea is that you can almost pretend that your fermions are free (and thus you can just add up energies taking into account the Pauli exclusion principle giving you Fermi-surfaces etc) even though your electrons are interacting (remember, there is always the Coulomb interaction around). The only effect the interactions have, is to renormalize the mass, to deform the Fermi surface away from a ball and to change the hight of the jump in the T=0 occupation number. Experience shows that this is an excellent description in more than one dimension (that has the exception of the Luttinger liquid) and can probably traced back to the fact that a four-Fermi-interaction is non-renormalizable and thus invisible in the IR.

Only, it is important to remember that the fields/particles in that effective theories are not really the electrons you started with but just quasi-particles that are build in complicated ways out of the microscopic particles carrying around clouds of other particles and deforming the lattice they move in. But these details don't matter and that is the point.

It is only important to guess the effective theory in the same universality class. You never derive this (or: hardly ever). Following an exact renormalization group flow is just way beyond what is possible. You make a hopefully educated guess (based on symmetries etc) and then check that you get good descriptions. But only the fact, that there are not too many universality classes makes this process of guessing worthwhile.

Free or weakly coupled theories are not the only possible guesses for effective field theories in which one can calculate. 2d conformal field theories are others. And now, AdS-technology gives us another way of writing down correlation functions just as Feynman-rules give us correlation functions for weakly coupled theories. And that is all one needs: Correlation functions of effective field theory candidates. Once you have those you can check if you are lucky and get evidence that you are in the correct universality class. You don't have to derive the IR theory from the UV. You never do this. You always just guess. And often enough this is good enough to work. And strictly speaking, you never know if your next measurement shows deviations from what you thought would be an effective theory for your system.

In a sense, it is like the mystery that chemistry works: The periodic table somehow pretends that the electrons in atoms are arranged in states that group together like for the hydrogen atom, you get the same n,l,m,s quantum numbers and the shells are roughly the same (although with some overlap encoded in the Aufbau principle) as for hydrogen. This pretends that the only effect of the electron-electron Coulomb potential is to shield the charge of the nucleus and every electron sees effectively a hydrogen like atom (although not necessarily with integer charge Z) and Pauli's exclusion principle regulates that no state is filled more than once. One could have thought that the effect of n-1 electrons on the last is much bigger, after all, they have a total charge that is almost the same of the nucleous, but it seems, the last electron only sees the nucleus with a 1/r potential although with reduced charge.

If you like, the only thing one should might worry about is that the Witten prescription to obtain boundary correlators from bulk configurations really gives you valid n-point functions of a quantum theory (if you feel sufficient mathematical masochism for example in the sense of Wightman) but you don't want to show that it is the quantum field theory corresponding to the material you started with.

1 comment:

salvish goomanee said...

I am a physics student and I am particular interested in string theory and postmodern physics, I would like to share some ideas with you through my my blog, as a student I want to understand as much as possible, here is my link:

sgoomanee.blogspot.com
(the title is :physics and the human mind) , thanks