tag:blogger.com,1999:blog-88830342018-07-11T22:30:02.057+02:00atdotdeWhat comes to my mind. Physics, politics, computers, rants. All CC-BY-SA unless otherwise stated.Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.comBlogger191125tag:blogger.com,1999:blog-8883034.post-1785472283772026702018-03-29T21:35:00.000+02:002018-03-29T21:35:21.326+02:00Machine Learning for Physics?!?Today was the last day of a nice <a href="https://indico.mpp.mpg.de/event/5578/overview">workshop</a> here at the Arnold Sommerfeld Center organised by Thomas Grimm and Sven Krippendorf on the use of Big Data and Machine Learning in string theory. While the former (at this workshop mainly in the form of developments following <a href="http://hep.itp.tuwien.ac.at/~kreuzer/CY/">Kreuzer/Skarke</a> and taking it further for F-theory constructions, orbifolds and the like) appears to be quite advanced as of today, the latter is still in its very early days. At best.<br /><br />I got the impression that for many physicists that have not yet spent too much time with this, deep learning and in particular deep neural networks are expected to be some kind of silver bullet that can answer all kinds of questions that humans have not been able to answer despite some effort. I think this hope is at best premature and looking at the (admittedly impressive) examples where it works (playing Go, classifying images, speech recognition, event filtering at LHC) these seem to be more like those problems where humans have at least a rough idea how to solve them (if it is not something that humans do everyday like understanding text) and also roughly how one would code it but that are too messy or vague to be treated by a traditional program.<br /><br />So, during some of the less entertaining talks I sat down and thought about problems where I would expect neural networks to perform badly. And then, if this approach fails even in simpler cases that are fully under control one should maybe curb the expectations for the more complex cases that one would love to have the answer for. In the case of the workshop that would be guessing some topological (discrete) data (that depends very discontinuously on the model parameters). Here a simple problem would be a 2-torus wrapped by two 1-branes. And the computer is supposed to compute the number of matter generations arising from open strings at the intersections, i.e. given two branes (in terms of their slope w.r.t. the cycles of the torus) how often do they intersect? Of course these numbers depend sensitively on the slope (as a real number) as for rational slopes [latex]p/q[/latex] and [latex]m/n[/latex] the intersection number is the absolute value of [latex]pn-qm[/latex]. My guess would be that this is almost impossible to get right for a neural network, let alone the much more complicated variants of this simple problem.<br /><br />Related but with the possibility for nicer pictures is the following: Can a neural network learn the shape of the Mandelbrot set? Let me remind those of you who cannot remember the 80ies anymore, for a complex number c you recursively apply the function<br />[latex]f_c(z)= z^2 +c[/latex]<br />starting from 0 and ask if this stays bounded (a quick check shows that once you are outside [latex]|z| < 2[/latex] you cannot avoid running to infinity). You color the point c in the complex plane according to the number of times you have to apply f_c to 0 to leave this circle. I decided to do this for complex numbers x+iy in the rectangle -0.74<x 0.35="" and="" as="" boundary="" contains="" corresponding="" like="" looks="" of="" other="" p="" picture="" set.="" some="" that="" the="" this:="" this="" y=""><div class="separator" style="clear: both; text-align: center;"><a href="https://3.bp.blogspot.com/-Cc-lEoFrjA8/Wr08gZizIjI/AAAAAAAALgU/NSktrpsD4fAajX2p_VxuuPxNd7A15IQkACLcBGAs/s1600/learnmandelbrot.png" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="501" data-original-width="501" height="320" src="https://3.bp.blogspot.com/-Cc-lEoFrjA8/Wr08gZizIjI/AAAAAAAALgU/NSktrpsD4fAajX2p_VxuuPxNd7A15IQkACLcBGAs/s320/learnmandelbrot.png" width="320" /></a></div><div class="" style="clear: both; text-align: left;">I have written a small mathematica program to compute this image. Built into mathematica is also a neural network: You can feed training data to the function Predict[], for me these were 1,000,000 points in this rectangle and the number of steps it takes to leave the 2-ball. Then mathematica thinks for about 24 hours and spits out a predictor function. Then you can plot this as well:</div><div class="separator" style="clear: both; text-align: left;"><br /></div><br /><div class="separator" style="clear: both; text-align: center;"><a href="https://1.bp.blogspot.com/-8HhkNAtvDo0/Wr09UHeMsrI/AAAAAAAALgc/TRnxq5VyItIJEomxyQuUF_dYDbgs0FO6ACLcBGAs/s1600/learnedmandelbrot.png" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="501" data-original-width="501" height="320" src="https://1.bp.blogspot.com/-8HhkNAtvDo0/Wr09UHeMsrI/AAAAAAAALgc/TRnxq5VyItIJEomxyQuUF_dYDbgs0FO6ACLcBGAs/s320/learnedmandelbrot.png" width="320" /></a></div><div class="separator" style="clear: both; text-align: left;">There is some similarity but clearly it has no idea about the fractal nature of the Mandelbrot set. If you really believe in magic powers of neural networks, you might even hope that once it learned the function for this rectangle one could extrapolate to outside this rectangle. Well, at least in this case, this hope is not justified: The neural network thinks the correct continuation looks like this:</div><div class="separator" style="clear: both; text-align: center;"><a href="https://2.bp.blogspot.com/-uTaScAiWnro/Wr0_zViU4PI/AAAAAAAALgo/bZpyISjAFjAnSzLWk9y-yDcfOqLteDSHQCLcBGAs/s1600/learnmandelbrotextrapolated.png" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="501" data-original-width="501" height="320" src="https://2.bp.blogspot.com/-uTaScAiWnro/Wr0_zViU4PI/AAAAAAAALgo/bZpyISjAFjAnSzLWk9y-yDcfOqLteDSHQCLcBGAs/s320/learnmandelbrotextrapolated.png" width="320" /></a></div><div class="separator" style="clear: both; text-align: left;">Ehm. No.</div><div class="separator" style="clear: both; text-align: left;"><br /></div><div class="separator" style="clear: both; text-align: left;">All this of course with the caveat that I am no expert on neural networks and I did not attempt anything to tune the result. I only took the neural network function built into mathematica. Maybe, with a bit of coding and TensorFlow one can do much better. But on the other hand, this is a simple two dimensional problem. At least for traditional approaches this should be much simpler than the other much higher dimensional problems the physicists are really interested in.</div></x>Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com2tag:blogger.com,1999:blog-8883034.post-61716206361556259252017-12-14T09:58:00.001+01:002017-12-14T09:58:36.040+01:00What are the odds?It's the time of year, you give out special problems in your classes. So this is mine for the blog. It is motivated by this picture of the home secretaries of the German federal states after their annual meeting as well as some recent discussions on Facebook:<br /><div class="separator" style="clear: both; text-align: center;"><a href="http://i.huffpost.com/gen/5625850/images/n-INNENMINISTERIUM-628x314.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="314" data-original-width="628" height="160" src="https://i.huffpost.com/gen/5625850/images/n-INNENMINISTERIUM-628x314.jpg" width="320" /></a></div>I would like to call it Summers' problem:<br /><br />Let's have two real random variables $M$ and $F$ that are drawn according to two probability distributions $\rho_{M/F}(x)$ (for starters you may both assume to be Gaussians but possibly with different mean and variance). Take $N$ draws from each and order the $2N$ results. What is the probability that the $k$ largest ones are all from $M$ rather than $F$? Express your results in terms of the $\rho_{M/F}(x)$. We are also interested in asymptotic results for $N$ large and $k$ fixed as well as $N$ and $k$ large but $k/N$ fixed.<br /><br />Last bonus question: How many of the people that say that they hire only based on merit and end up with an all male board realise that by this they say that women are not as good by quite a margin?Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com1tag:blogger.com,1999:blog-8883034.post-29552792327471824022017-11-09T10:35:00.001+01:002017-11-09T10:35:22.989+01:00Why is there a supercontinent cycle?One of the most influential books of my early childhood was my "Kinderatlas"<br /><div class="separator" style="clear: both; text-align: center;"><a href="https://images.booklooker.de/s/03249537_MTQxMzA=/Ravensburger-Kinderatlas.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="398" data-original-width="300" height="320" src="https://images.booklooker.de/s/03249537_MTQxMzA=/Ravensburger-Kinderatlas.jpg" width="241" /></a></div><div class="separator" style="clear: both; text-align: left;">There were many things to learn about the world (maps were actually only the last third of the book) and for example I blame <a href="https://thetheoreticaldiver.org/wordpress">my fascination for scuba diving</a> on this book. Also last year, when we visited the Mont-Doré in Auvergne and I had to explain how volcanos are formed to my kids to make them forget how many stairs were still ahead of them to the summit, I did that while mentally picturing the pages in that book about plate tectonics.</div><div class="separator" style="clear: both; text-align: center;"><a href="https://2.bp.blogspot.com/-wz0JRcXGQos/WgQbY9hmgPI/AAAAAAAALZA/POM4JzAJyPYRYz7yswxn7vMtsoPhR3W_ACLcBGAs/s1600/IMG_0304.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="1600" data-original-width="1200" height="320" src="https://2.bp.blogspot.com/-wz0JRcXGQos/WgQbY9hmgPI/AAAAAAAALZA/POM4JzAJyPYRYz7yswxn7vMtsoPhR3W_ACLcBGAs/s320/IMG_0304.jpg" width="240" /></a></div><br /><div class="separator" style="clear: both; text-align: center;"><a href="https://2.bp.blogspot.com/-hUniMIC9xac/WgQb1ZLJhYI/AAAAAAAALZE/xjSpHy8vFXQapyVTmOtMIpnhokFtRCN6wCLcBGAs/s1600/IMG_0310.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="348" data-original-width="1600" height="138" src="https://2.bp.blogspot.com/-hUniMIC9xac/WgQb1ZLJhYI/AAAAAAAALZE/xjSpHy8vFXQapyVTmOtMIpnhokFtRCN6wCLcBGAs/s640/IMG_0310.jpg" width="640" /></a></div><div class="separator" style="clear: both; text-align: center;"><br /></div><div class="separator" style="clear: both; text-align: left;">But there is one thing I about tectonics that has been bothering me for a long time and I still haven't found a good explanation for (or at least an acknowledgement that there is something to explain): Since the days of Alfred Wegener we know that the jigsaw puzzle pieces of the continents fit in a way that geologists believe that some hundred million years ago they were all connected as a supercontinent Pangea.</div><a href="https://commons.wikimedia.org/wiki/File:Pangea_animation_03.gif#/media/File:Pangea_animation_03.gif"><img alt="Pangea animation 03.gif" src="https://upload.wikimedia.org/wikipedia/commons/8/8e/Pangea_animation_03.gif" /></a><br />By Original upload by <a class="extiw" href="https://en.wikipedia.org/wiki/User:Tbower" title="en:User:Tbower">en:User:Tbower</a> - <a class="external text" href="https://geomaps.wr.usgs.gov/parks/animate/" rel="nofollow">USGS animation A08</a>, Public Domain, <a href="https://commons.wikimedia.org/w/index.php?curid=583951">Link</a><br /><br />In fact, that was only the last in a series of supercontinents, that keep forming and breaking up in the "supercontinent cycle".<br /><a href="https://commons.wikimedia.org/wiki/File:Platetechsimple.png#/media/File:Platetechsimple.png"><img alt="Platetechsimple.png" height="640" src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Platetechsimple.png/1200px-Platetechsimple.png" width="640" /></a><br />By <a class="new" href="https://commons.wikimedia.org/w/index.php?title=User:SimplisticReps&action=edit&redlink=1" title="User:SimplisticReps (page does not exist)">SimplisticReps</a> - <span class="int-own-work" lang="en">Own work</span>, <a href="https://creativecommons.org/licenses/by-sa/4.0" title="Creative Commons Attribution-Share Alike 4.0">CC BY-SA 4.0</a>, <a href="https://commons.wikimedia.org/w/index.php?curid=63509483">Link</a><br /><br />So here is the question: I am happy with the idea of several (say $N$) plates roughly containing a continent each that a floating around on the magma driven by all kinds of convection processes in the liquid part of the earth. They are moving around in a pattern that looks to me to be pretty chaotic (in the non-technical sense) and of course for random motion you would expect that from time to time two of those collide and then maybe stick for a while.<br /><br />Then it would be possible that also a third plate collides with the two but that would be a coincidence (like two random lines typically intersect but if you have three lines they would typically intersect in pairs but typically not in a triple intersection). But to form a supercontinent, you need all $N$ plates to miraculously collide at the same time. This order-$N$ process seems to be highly unlikely when random let alone the fact that it seems to repeat. So this motion cannot be random (yes, Sabine, this is a naturalness argument). This needs an explanation.<br /><br />So, why, every few hundred million years, do all the land masses of the earth assemble on side of the earth?<br /><br />One explanation could for example be that during those tines, the center of mass of the earth is not in the symmetry center so the water of the oceans flow to one side of the earth and reveals the seabed on the opposite side of the earth. Then you would have essentially one big island. But this seems not to be the case as the continents (those parts that are above sea-level) appear to be stable on much longer time scales. It is not that the seabed comes up on one side and the land on the other goes under water but the land masses actually move around to meet on one side.<br /><br />I have already asked this question whenever I ran into people with a geosciences education but it is still open (and I have to admit that in a non-zero number of cases I failed to even make the question clear that an $N$-body collision needs an explanation). But I am sure, you my readers know the answer or even better can come up with one.Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com2tag:blogger.com,1999:blog-8883034.post-52566166367355955692017-06-16T16:55:00.000+02:002017-06-16T16:55:52.162+02:00I got this wrongIn <a href="https://atdotde.blogspot.de/2017/06/some-diy-ligo-data-analysis.html"><span id="goog_136133695"></span>yesterday's post<span id="goog_136133696"></span></a>, I totally screwed up when identifying the middle part of the spectrum as low frequency. It is not. Please ignore what I said or better take it as a warning what happens when you don't double check.<br /><br />Apologies to everybody that I stirred up!Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-54266413090808968632017-06-15T11:26:00.001+02:002017-06-16T16:47:20.122+02:00Some DIY LIGO data analysis<b>UPDATE: After some more thinking about this, I have very serious doubt about my previous conclusions. From looking at the power spectrum, I (wrongly) assumed that the middle part of the spectrum is the low frequency part (my original idea was, that the frequencies should be symmetric around zero but the periodicity of the Bloch cell bit me). So quite to the opposite, when taking into account the wrapping, this is the high frequency part (at almost the sample rate). So this is neither physics nor noise but the sample rate. For documentation, I do not delete the original post but leave it with this comment.</b><br /><br /><br />Recently, in the Arnold Sommerfeld Colloquium, we had Andrew Jackson of NBI talk about his take on the LIGO gravitational wave data, see <a href="http://www.physik.uni-muenchen.de/aus_der_fakultaet/kolloquien/asc_kolloquium/archiv_sose17/jackson/index.html">this announcement with link to a video recording</a>. He encouraged the audience to download the <a href="https://losc.ligo.org/events/GW150914/">freely available raw data</a> and play with it a little bit. This sounded like fun, so I had my go at it. Now, that <a href="https://arxiv.org/abs/1706.04191">his paper</a> is out, I would like to share what I did with you and ask for your comments.<br /><div><br /></div><div>I used mathematica for my experiments, so I guess the way to proceed is to guide you to<a href="http://atdotde.de/~robert/ligo%20writeup_moved.html"> an html export of my (admittedly cleaned up) notebook</a> (Source for your own experiments <a href="http://atdotde.de/~robert/ligo%20writeup_moved.nb">here</a>).</div><div><br /></div><div>The executive summary is that apparently, you can eliminate most of the "noise" at the interesting low frequency part by adding to the signal its time reversal casting some doubt about the stochasticity of this "noise".</div><div><br /></div><div class="separator" style="clear: both; text-align: center;"><a href="http://atdotde.de/~robert/HTMLFiles/ligo%20writeup_12.gif" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" src="http://atdotde.de/~robert/HTMLFiles/ligo%20writeup_12.gif" data-original-height="333" data-original-width="567" height="187" width="320" /></a></div><div class="separator" style="clear: both; text-align: center;"><br /></div><div class="separator" style="clear: both; text-align: left;">I would love to hear what this is supposed to mean or what I am doing wrong, in particular from my friends in the gravitational wave community.</div><div class="separator" style="clear: both; text-align: center;"><br /></div><div><br /></div><div><br /></div>Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com6tag:blogger.com,1999:blog-8883034.post-18980835894091586472017-06-08T11:48:00.002+02:002017-06-09T14:58:08.282+02:00Relativistic transformation of temperatureApparently, there is a long history of controversy going back to Einstein an Planck about the proper way to deal with temperature relativistically. And I admit, I don't know what exactly the modern ("correct") point of view is. So I would like to ask your opinion about a puzzle we came up during yesterday's after colloquium dinner with Erik Verlinde:<br /><div><br /></div><div>Imagine a long rail of a railroad track. It is uniformly heated to a temperature T and is in thermodynamic equilibrium (if you like a mathematical language: it is in a KMS state). On this railroad track travels Einstein's relativistic train at velocity v. From the perspective of the conductor, the track in front of the train is approaching the train with velocity v, so one might expect that the temperature T appears blue shifted while behind the train, the track is moving away with v and so the temperature appears red-shifted. </div><div><br /></div><div>Following this line of thought, one would conclude that the conductor thinks the rail has different temperatures in different places and thus is out of equilibrium. </div><div><br /></div><div>On the other hand, the question of equilibrium should be independent of the observer. So, is the assumption of the Doppler shift wrong? </div><div><br /></div><div>A few remarks: If you are worried that Doppler shifts should apply to radiation then you are free to assume that both in front and in the back, there are black bodies in thermal contact with the rail and thus exhibiting a photon gas at the same temperature as the rail.</div><div><br /></div><div>You could probably also make the case for the temperature transforming like the time component of a four vector (since it is essentially an energy). Then the transformed temperature would be independent of the sign of v. This you could for example argue for by assuming the temperature is so high that in your black body photon gas you also create electron-positron pairs which would be heavier due to their relativistic speed relative to the train and thus requiring more energy (and thus temperature) for their creation.</div><div><br /></div><div>A final remark is about an operational definition of temperature at relativistic speeds: It might be difficult to bring a relativistic thermometer in equilibrium with a system if there is a large relative velocity (when we define temperature as the criterium for two systems in contact to be in equilibrium). Or to operate a heat engine between he front part of the rail and the back while moving along at relativistic speed and then arguing about the efficiency (and defining the temperature that way).<br /><br /><b>Update one day later:</b><br />Thanks for all your comments. We also had some further discussions here and I would like to share my conclusions:<br /><br />1) It probably boils down to what exactly you mean when you say ("temperature"). Of course, you want that his at least in familiar situations agrees with what thermometers of this type or another measure. (In the original text I had hinted at two possible definitions that I learned about from a very interesting <a href="https://arxiv.org/abs/1212.2409">paper</a> by Buchholz and Solveen discussing the Unruh effect and what would actually be observed there: Either you define temperature that the property that characterises equilibrium states of systems such there is no heat exchange when you bring in contact two systems of the same temperature. This is for example close to what a mercury thermometer measures. Alternatively, you operate a perfect heat engine between two reservoirs and define your temperatures via<br />$$\eta = \frac{T_h - T_c}{T_h}.$$<br />This is for example hinted at in the Feynamn lectures on physics.<br /><br />One of the commentators suggested using the ratio of eigenvalues of the energy momentum tensor as definition of temperature. Even though this might give the usual thing for a perfect fluid I am not really convinced that this generalises in the right way.<br /><br />2) I would rather define the temperature as the parameter in the Gibbs (or rather KMS) state (it should only exist in equilibrium, anyway). So if your state is described by density matrix $\rho$, and it can be written as<br />$$\rho = \frac{e^{-\beta H}}{tr(e^{-\beta H})}$$<br />then $1/\beta$ is the temperature. Obviously, this requires the a priori knowledge of what the Hamiltonian is.<br /><br />For such states, under mild assumptions, you can prove nice things: Energy-entropy inequalities ("minimisation of free energy"), stability, return to equilibrium and most important here: passivity, i.e. the fact you cannot extract mechanical work out of this state in a cyclic process.<br /><br />2) I do not agree that it is out of the question to have a thermometer with a relative velocity in thermal equilibrium with a heat bath at rest. You could for example imagine a mirror fixed next to the track and in thermal equilibrium with the track. A second mirror is glued to the train (and again in thermal equilibrium, this time with a thermometer). Between the mirrors is is a photon gas (black body) that you could imagine equilibrating with the mirrors on both ends. The question is if that is the case.<br /><br />3) Maybe rails and trains a a bit too non-spherical cows, so lets better look at an infinitely extended free quantum gas (bosons or fermions, your pick). You put it in a thermal state at rest, i.e. up to normalisation, its density matrix is given by<br />$$\rho = e^{-\beta P^0}.$$<br />Here $P^0$ is the Poincaré generator of time translations.<br /><br />Now, the question above can be rephrased as: Is there a $\beta'$ such that also<br />$$\rho = e^{-\beta' (\cosh\alpha P^0 + \sinh \alpha P^1)}?$$<br />And to the question formulated this way, the answer is pretty clearly "No". A thermal state singles out a rest frame and that's it. It is not thermal in the moving frame and thus there is no temperature.<br /><br />It's also pretty easy to see this state is not passive (in the above sense): You could operate a windmill in the slipstream of particles coming more likely from the front than the back. So in particular, this state is not KMS (this argument I learned from Sven Bachmann).<br /><br />4) Another question would be about gravitational redshift: Let's take some curve space-time and for simplicity assume it has no horizons (for example, let the far field be Schwarzschild but in the center, far outside the Schwarzschild radius, you smooth it out. Like the space-time created by the sun). Make it static, so it contains a timeline Killing vector (otherwise no hope for a thermal state). Now prepare a scalar field in the thermal state with temperature T. Couple to it a harmonic oscillator via<br />$$ H_{int}(r) = a^\dagger a + \phi(t, r) (a^\dagger + a).$$<br />You could now compute a "local temperature" by computing the probability that the harmonic oscillator is in the first excited state. Then, how does this depend on $r$?</div>Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com12tag:blogger.com,1999:blog-8883034.post-58424659282751179802016-12-09T14:48:00.001+01:002016-12-09T14:48:29.824+01:00Workshop on IoT Liability at 33c3After my recent <a href="https://atdotde.blogspot.de/2016/10/mandatory-liability-for-software-is.html">blog post</a> on the dangers of liability for manufacturers of devices in the times of IoT, I decided I will run a <a href="https://events.ccc.de/congress/2016/wiki/Session:Haftung_f%C3%BCr_Devices_und_Software_gestalten">workshop</a> at 33C3, the annual hacker conference of the Chaos Computer club. I am proud I could convince <a href="https://buermeyer.de/ulf/">Ulf Buermeyer</a> (well known judge, expert in constitutional law, hacker, podcaster) to host this workshop with me.<br /><br />The main motivation for me is that I hope that this will be a big issue in the coming year but it might still be early enough to influence policy before everybody commits herself to their favorite (snake oil) solution.<br /><br />I have started collecting and sorting ideas in a <a href="https://docs.google.com/document/d/1hTYnLYdzDjeZAs_45HFx_HfMaZI2FrYJTV9YaXCHwrw/edit?usp=sharing">Google document</a>. <a href="https://commons.wikimedia.org/wiki/File%3AInternet_of_things_signed_by_the_author.jpg" title="By Wilgengebroed on Flickr [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons"><img alt="Internet of things signed by the author" src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/01/Internet_of_things_signed_by_the_author.jpg/512px-Internet_of_things_signed_by_the_author.jpg" width="512" /></a>Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com4tag:blogger.com,1999:blog-8883034.post-28507534590825136672016-11-26T17:19:00.002+01:002016-11-26T17:19:58.857+01:00Breaking News: Margarine even more toxic!One of the most popular posts of this blog (as far as resonance goes) was the one on <a href="https://atdotde.blogspot.de/2006/08/scaling-of-price-of-margarine.html">Scaling the Price of Margarine</a>. Today, I did the family weekend shopping and noticed I have to update the calculation:<br /><br /><div class="separator" style="clear: both; text-align: center;"><a href="https://1.bp.blogspot.com/-Hp34RKjWpPk/WDmxh3naCbI/AAAAAAAALUA/WrC0JAlclgM-_f6uc2WJ7ZHL33QAR50agCLcB/s1600/laetta%2B-%2B1.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" height="320" src="https://1.bp.blogspot.com/-Hp34RKjWpPk/WDmxh3naCbI/AAAAAAAALUA/WrC0JAlclgM-_f6uc2WJ7ZHL33QAR50agCLcB/s320/laetta%2B-%2B1.jpg" width="240" /></a></div>At our local Rewe branch, they offer the pound of Lätta for 88 cents while they ask 1.19Euro for half the pound. With the ansatz from the old post, this means the price for the actual margarine is now -9,78Euro/kg. This, by coincidence is approximately also the price you have to pay to get rid of waste oil.Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-30445981001602457042016-11-13T14:12:00.001+01:002016-11-13T14:12:31.254+01:00Theoretical diverBesides physics, another hobby of mine is scuba diving. For many reasons, unfortunately, I don't have much time anymore, to get in the water. As partial compensation, I started some time ago to contribute the <a href="https://subsurface-divelog.org/">Subsurface</a>, the open source dive log program. Partly related to that, I also like to theorize about diving. To put that in form, I now started another blog <a href="http://atdotde.de/theoreticaldiver/">The Theoretical Diver</a> to discuss aspects of diving that I have been thinking about.Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-78417764819897241552016-11-13T09:36:00.000+01:002016-11-13T11:52:37.483+01:00OpenAccess: Letter to the editor of Süddeutsche ZeitungIn yesterday's Süddeutsche Zeitung, there is an <a href="http://www.sueddeutsche.de/politik/kolumne-goldener-zugang-1.3244900">opinion piece</a> by historian <a href="https://de.wikipedia.org/wiki/Norbert_Frei">Norbert Frei</a> on the German government's OpenAccess initiative, which prompted me to write a letter to the editor (naturally in German). Here it is:<br /><br /><span style="font-family: "helvetica"; font-size: 12px;">Zum Meinungsbeitrag „Goldener Zugang“ von Norbert Frei in der SZ vom 12./13. November 2016:</span><br /><div style="font-family: Helvetica; font-size: 12px;"><br /></div><div style="font-family: Helvetica; font-size: 12px;">Herr Frei sorgt sich in seinem Beitrag, dass der Wissenschaft unter der Überschrift OpenAccess von außen ein Kulturwandel aufgezwungen werden soll. Er fürchtet, dass ihn die Naturwissenschaftler zusammen mit der Politik zwingen, seine Erkenntnisse nicht mehr in papiernen Büchern darlegen zu können, sondern alles nur noch zerstückelt in kleine Artikel-Happen in teure digitale Archive einzustellen, wo sie auf die Bitverrottung waren, da schon in kürzester Zeit das Fortschreiten von Hard- und Software dazu führen wird, dass die Datenformate unlesbar werden.</div><div style="font-family: Helvetica; font-size: 12px;"><br /></div><div style="font-family: Helvetica; font-size: 12px;">Als Gegenmodell führt er die Gutenberg-Bibel an, von der eine Mehrzahl der Exemplare die Jahrhunderte überdauert haben. Nun weiss ich nicht, wann Herr Frei das letzte Mal in seiner Gutenberg-Bibel geblättert hat, ich habe in meinem Leben nur ein einziges Mal vor einer gestanden: Diese lag in einer Vitrine der Bibliothek von Cambridge und war auf einer Seite aufgeschlagen, keine andere Seite war zugänglich. Dank praktischem OpenAccess ist es aber nicht nur den guten Christenmenschen möglich, eine Kopie zu Hause vorzuhalten. Viel mehr noch, die akademischen Theologen aus meinem Bekanntenkreis arbeiten selbstverständlich mit einer digitalen Version auf ihrem Laptop oder Smartphone, da diese dank Durchsuchbarkeit, Indizierung und Querverweisen in andere Werke für die Forschung viel zugänglicher ist.</div><div style="font-family: Helvetica; font-size: 12px;"><br /></div><div style="font-family: Helvetica; font-size: 12px;">Geschenkt, dass es bei der OpenAccess-Initiative eine Ausnahme für Monographien geben soll. Niemand will das Bücherschreiben verbieten. Es geht nur darum, dass, wer Drittmittel von der öffentlichen Hand erhalten will, nicht noch einmal die Hand dafür aufhalten soll, wenn sich dann die vor allem wissenschaftliche Öffentlichkeit über die Ergebnisse informieren will. Professorinnen und Professoren an deutschen Universitäten schreiben ihre wissenschaftlichen Veröffentlichungen nicht zu ihrem Privatvergnügen, es ist Teil ihrer Dienstaufgaben. Warum wollen sie die Früchte ihres bereits entlohnten Schaffens dann noch ein weiteres Mal den öffentlichen Bibliotheken verkaufen? </div><div style="font-family: Helvetica; font-size: 12px;"><br /></div><div style="font-family: Helvetica; font-size: 12px;">Ich kann mich noch gut an meinen Stolz erinnern, als ich das erste Mal meinen Namen gedruckt auf Papier sah, der das Titelblatt meiner ersten Veröffentlichung zierte. Jenseits davon ist es für mich als Wissenschaftler vor allem wichtig, dass das, was ich da herausfinde, von anderen wahrgenommen und weitergetrieben wird. Und das erreiche ich am besten, wenn es so wenig Hürden wie möglich gibt, dieses zu tun.</div><div style="font-family: Helvetica; font-size: 12px;"><br /></div><div style="font-family: Helvetica; font-size: 12px;">Ich selber bin theoretischer Hochenergiephysiker, selbstredend gibt es sehr unterschiedliche Fächerkulturen. In meinem Fach ist es seit den frühen Neunzigerjahren üblich, alle seine Veröffentlichungen - vom einseitigen Kommentar zu einem anderen Paper bis zu einem Review von vielen hundert Seiten - in arXiv.org, einem nichtkommerziellen Preprintarchiv einzustellen, wo es von allen Fachkolleginnen und -kollegen ab dem nächsten Morgen gefunden und in Gänze gelesen werden kann, selbst viele hervorragend Lehrbücher gibt es inzwischen dort. Diese globale Verbreitung neben einfachem Zugang (ich habe schon seit mehreren Jahren keinen papiernen Fachartikel in unserer Bibliothek mehr in einem Zeitschriftenband mehr nachschlagen müssen, ich finde alles auf meinem Computer) hat so viele Vorteile, das man gerne auf mögliche Tantiemen verzichtet, zumal diese für Zeitschriftenartikel noch nie existiert haben und, von wenigen Ausnahmen abgesehen, verschwinden gering gegenüber einem W3-Gehalt ausfallen und als Stundenlohn berechnet jeden Supermarktregaleinräumer sofort die Arbeit niederlegen ließen. Wir Naturwissenschaftler sind auf einem guten Weg, uns von parasitären Fachverlagen zu emanzipieren, die es traditionell schafften, jährlich den Bibliotheken Milliardenumsätze für unsere Arbeit abzupressen, wobei sie das Schreiben der Artikel, die Begutachtung, den Textsatz und die Auswahl unbezahlt an von der Öffentlichkeit bezahlte Wissenschaftlerinnen und Wissenschaftler delegiert haben und sie sich ausschliesslich ihre Gatekeeper Funktion bezahlen liessen. </div><div style="font-family: Helvetica; font-size: 12px;"><br /></div><div style="font-family: Helvetica; font-size: 12px;">Und da ich an Leserschaft interessiert bin, werde ich diesen Brief auch in mein Blog einstellen.</div><div><br /></div>Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com4tag:blogger.com,1999:blog-8883034.post-73095928251685852732016-10-27T14:56:00.003+02:002016-10-27T15:12:54.729+02:00Daylight saving time about to end (end it shouldn't)Twice a year, around the last Sunday in March and the last Sunday in October, everybody (in particular newspaper journalists) take a few minutes off to rant about daylight savings time. So, for this first time, I want to join this tradition in writing.<br /><br />Until I had kids, I could not care less about the question of changing the time twice a year. But at least for our kids (and then secondary also for myself), I realize biorhythm is quite strong and at takes more than a week to adopt to the 1 hour jet lag (in particular in spring when it means getting out of bed "one hour earlier"). I still don't really care about cows that have to deliver their milk at different times since there is no intrinsic reason that the clock on the wall has to show a particular time when it is done and if it were really a problem, the farmers could do it at fixed UTC.<br /><br />So, obviously, it is a nuisance. So what are the benefit that justify it? Well, obviously, in summer the sun sets at a later hour and we get more sun when being outside in the summer. That sounds reasonable. But why restrict it to the summer?<br /><br />Which brings me to my point: If you ask me, I want to get rid of changing the offset to UTC twice a year and want to permanently adopt daylight saving time.<br /><br />But now I hear people cry that this is "unnatural", we have to have the traditional time at least in the winter when it does not matter as it's too cold to be outside (which only holds for people with defective clothing as we know). So how natural is CET (the time zone we set our clocks to in winter), let's take people living in Munich for an example?<br /><br />First of all: It is not solar time! CET is the "mean solar time" when you live at a longitude of 15 degrees east, which is (assuming the latitude) close to <a href="https://www.google.de/maps/@48.1454127,15,13z?hl=de">Neumarkt an der Ypps</a> somewhere in Austria not too far from Vienna. Munich is about 20 minutes behind. So, this time is artificial as well, and Berlin being closer to 15 degrees, it is probably Prussian.<br /><br />Also a common time zone for Germany was established only in the 1870s when the advent of railways and telegraphs make synchronization between different local times advantageous. So this "natural" time is not that old either.<br /><br />It is so new, that<a href="https://en.wikipedia.org/wiki/Christ_Church,_Oxford"> Christ Church college in Oxford</a> still refuses to fully bow to it: Their clock tower shows Greenwich time. And the cathedral services start according to solar time (about five minutes later) because they don't care about modern shenanigans. ("How many Oxford deans does it take to change a light bulb?" ---- "Change??!??"). Similarly, in Bristol, there is a famous clock with two minute hands.<br /><div class="separator" style="clear: both; text-align: center;"><a href="https://upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Exchangeclock.JPG/800px-Exchangeclock.JPG" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" height="238" src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Exchangeclock.JPG/800px-Exchangeclock.JPG" width="320" /></a></div><br />Plus, even if you live in Neumarkt an der Ybbs, your sun dial does not always show the correct noon! Thanks to the tilt of the earth axis and the fact that the orbit of the earth is elliptic, this varies through the year by a number of minutes:<br /><div class="separator" style="clear: both; text-align: center;"><a href="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Equation_of_time.svg/512px-Equation_of_time.svg.png" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" height="274" src="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Equation_of_time.svg/512px-Equation_of_time.svg.png" width="320" /></a></div><br />So, "winter time" is in no way more natural than the other time zone. So we should be free to choose a time zone according to what is convenient. At least for me, noon is not the center of my waking hours (it's more 5,5 : 12). So, aligning those more with the sun seems to be a pretty good idea.<br /><br />PS: The title was a typo, but looking at it I prefer it the way it is...<br /><br />Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com2tag:blogger.com,1999:blog-8883034.post-37901975775254653842016-10-24T14:55:00.003+02:002016-10-24T15:02:02.875+02:00Mandatory liability for software is a horrible ideaOver the last few days, a number of prominent web sites including Twitter, Snapchat and Github were effectively unreachable for an extended period of time. As became clear, the problem was that DynDNS, a provider of DNS services for these sites was under a number of very heavy DDoS (distributed denial of service) attack that were mainly coming from compromised internet of things devices, in particular web cams.<br /><br />Even though I do not see a lot of benefit from being able to change the color of my bedroom light via internet, I love the idea to have lots of cheap devices (I continue to have a lot of fun with C.H.I.P.s, full scale Linux computers with a number of ports for just 5USD, also for Subsurface, in particular those open opportunities for the mobile version), there are of course concerns how one can economically have a stable update cycle for those, in particular once they are build into black-box customer devices.<br /><br />Now, after some dust settled comes of course the question "Who is to blame?" and should be do anything about this. Of course, the manufacturer of the web cam made this possible through far from perfect firmware. Also, you could blame DynDNS for not being able to withstand the storms that from time to time sweep the internet (a pretty rough place after all) or the services like Twitter to have a single point of failure in DynDNS (but that might be hard to prevent given the nature of the DNS system).<br /><br />More than once I have now heard a <a href="http://www.taz.de/Kommentar-Hackerangriff/!5347856/">call for new laws</a> that would introduce a liability for the manufacturer of the web cam as they did not provide firmware updates in time that prevent these devices from being owned and then DDoSing around on the internet.<br /><br />This, I am convinced, would be a terrible idea: It would make many IT businesses totally uneconomic. Let's stick for example with the case at hand. What is the order of magnitude of damages that occurred to the big companies like Twitter? They probably lost ad revenue of about a weekend. Twitter recently made $6\cdot 10^8\$ $ per quarter, which averages to 6.5 million per day. Should the web cam manufacturer (or OEM or distributor) now owe Twitter 13 million dollars? I am sure that would cause immediate bankruptcy. Or just the risk that this could happen would prevent anybody from producing web cams or similar things in the future. As nobody can produce non-trivial software that is free of bugs. You should strive to weed out all known bugs and provide updates, of course, but should you be made responsible if you couldn't? Responsible in a financial sense?<br /><br />What was the damage cause by the <a href="https://en.wikipedia.org/wiki/Heartbleed">heart bleed bug</a>? I am sure this was much more expensive. Who should pay for this? OpenSSL? Everybody that links against OpenSSL? The person that committed the wrong patch? The person that missed it code review?<br /><br />Even if you don't call up these astronomic sums and have fixed fine (e.g. an unfixed vulnerability that gives root access to an attacker from the net costs 10000$) that would immediately stop all open source development. If you give away your software for free, do you really want to pay fines if not everything is perfect? I surely wouldn't.<br /><br />For that reason, the GPL has the clauses (and other open source licenses have similar ones) stating<br /><br /><blockquote class="tr_bq"> 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY<br />FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN<br />OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES<br />PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED<br />OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF<br />MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS<br />TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE<br />PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,<br />REPAIR OR CORRECTION.<br /> 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING<br />WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR<br />REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,<br />INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING<br />OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED<br />TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY<br />YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER<br />PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE<br />POSSIBILITY OF SUCH DAMAGES.</blockquote><div>(capitalization in the original). Of course, there is "required by applicable law" but I cannot see people giving you software for free if you later make them pay fines.</div><div><br /></div><div>And for course, it is also almost impossible to make exceptions in the law for this. For example, a "non-commercial" exception does not help as even though you do not charge for open source software a lot of it is actually provided with some sort of commercial interest.</div><div><br /></div><div>Yes, I can understand the tendency to make creators of defective products that don't give a damn about an update path responsible for the stuff they ship out. And I have the greatest sympathy for consumer protection laws. But here, there collateral damage would be huge (we might well lose the whole open source universe every small software company except the few big one that can afford the herds of lawyers to defend against these fines).<br /><br />Note that I only argue for mandatory liability. It should of course always be a possibility that a provider of software/hardware give some sort of "fit for purpose" guarantee to its customers or a servicing contract where they promise to fix bugs (maybe so that the customer can fulfill their liabilities to their customers herself). But in most of the cases, the provider will charge for that. And the price might be higher than currently that for a light bulb with an IP address.</div><div><br /></div><div>The internet is a rough place. If you expose your service to it better make sure you can handle every combination of 0s and 1s that comes in from there or live with it. Don't blame the source of the bits (no matter how brain dead the people at the other end might be).</div><div><br /></div><div><br /></div>Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-86039624289600381512016-10-07T10:15:00.003+02:002016-10-07T12:07:57.756+02:00My two cents on this year's physics Nobel prizeThis year's <a href="http://www.nobelprize.org/nobel_prizes/physics/laureates/2016/press.html">Nobel prize</a> is given for quite abstract concepts. So the popular science outlets struggle in giving good explanations for what it is awarded for. I cannot add anything to this, but over at math overflow, mathematicians <a href="http://mathoverflow.net/questions/251470/topology-and-the-2016-nobel-prize-in-physics/251590#251590">asked for a mathematical explanation</a>. So here is my go of an outline for people familiar with topology but not so much physics:<br /><br />Let me try to give a brief explanation: All this is in the context of Fermi liquid theory, the idea that you can describe the low energy physics of these kinds of systems by pretending they are generated by free fermions in an external potential. So, all you need to do is to solve the single particle problem for the external potential and then fill up the energy levels from the bottom until you reach the total particle number (or actually the density). It is tempting (and conventional) to call these particles electrons, and I will do so here, but of course actual electrons are not free but interacting. This "Fermi Liquid" explanation is just and effective description for long wavelength (the IR end of the renormalization group flow) where it turns out, that at those scales the interactions play no role (they are "irrelevant operators" in the language of the renormalization group).<br /><br />The upshot is, we are dealing with free "electrons" and the previous paragraph was only essential if you want to connect to the physical world (but this is MATH overflow anyway).<br /><br />Since the external potential comes from a lattice (crystal) it is invariant under lattice translations. So Bloch theory tells you, you can restrict your attention as far as solving the Schrödinger equation to wave functions living in the unit cell of the lattice. But you need to allow for quasi-periodic boundary conditions, i.e. when you go once around the unit cell you are allowed to pick up a phase. In fact, there is one phase for each generator of the first homotopy group of the unit cell. Each choice of these phases corresponds to one choice of boundary conditions for the wave function and you can compute the eigenvalues of the Hamiltonian for these given boundary conditions (the unit cell is compact so we expect discrete eigenvalues, bounded from below).<br /><br />But these eigenvalues depend on the boundary conditions and you can think of the as a function of the phases. Each of the phases takes values in U(1) so the space of possible phases is a torus and you can think of the eigenvalues as functions on the torus. Actually, when going once around an irreducible cycle of the torus not all eigenvalues have to come back to themselves, you can end up with a permutation it this is not really a function but a section of a bundle but let's not worry too much about this as generally this "level crossing" does not happen in two dimensions and only at discrete points in 3D (this is Witten's argument with the 2x2 Hamiltonian above).<br /><br />The torus of possible phases is called the "Brioullin zone" (sp?) by physicists and its elements "inverse lattice vectors" (as you can think of the Brioullin zone as obtained from modding out the dual lattice of the lattice we started with).<br /><br />Now if your electron density is N electrons per unit cell of the lattice Fermi Liquid theory asks you to think of the lowest N energy levels as occupied. This is the "Fermi level" or more precisely the graph of the N-th eigenvalue over the Bioullin zone. This graph (views as a hyper-surface) can have non-trivial topology and the idea is that by doing small perturbations to the system (like changing the doping of the physical probe or changing the pressure or external magnetic field or whatever) stuff behaves continuously and thus the homotopy class cannot change and is thus robust (or "topological" as the physicist would say).<br /><br />If we want to inquire about the quantum Hall effect, this picture is also useful: The Hall conductivity can be computed to leading order by linear response theory. This allows us to employ the Kubo formula to compute it as a certain two-point function or retarded Green's function. The relevant operators turn out to be related to the N-th level wave function and how it changes when we move around in the Brioullin zone: If we denote by u the coordinates of the Brioullin zone and by $\psi_u(x)$ the N-th eigenfunction for the boundary conditions implied by u, we can define a 1-form<br />$$ A = \sum_i \langle \psi_u|\partial_{u_i}|\psi_u\rangle\, du^i = \langle\psi_u|d_u|\psi\rangle.$$<br />This 1-form is actually the connection of a U(1) bundle and the expression the Kubo-formula asks us to compute turns out to be the first Chern number of that bundle (over the Brioullin zone).<br /><br />Again that, as in integer, cannot change upon small perturbations of the physical system and this is the explanation of the levels in the QHE.<br /><br />In modern applications, an important role is played by the (N-dimensional and thus finite dimensional) projector the subspace of Hilbert space spanned by the eigenfunctions corresponding to he N lowest eigenvalues, again fibered over the Brioullin zone. Then one can use K-theory (and KO-theory in fact) related to this projector to classify the possible classes of Fermi surfaces (these are the "topological phases of matter", as eventually, when the perturbation becomes too strong even the discrete invariants can jump which then physically corresponds to a phase transition).Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-88880790578901583592016-10-07T10:15:00.002+02:002016-10-07T10:42:17.891+02:00My two cents on this years physics Nobel prizeThis year's <a href="http://www.nobelprize.org/nobel_prizes/physics/laureates/2016/press.html">Nobel prize</a> is given for quite abstract concepts. So the popular science outlets struggle in giving good explanations for what it is awarded for. I cannot add anything to this, but over at math overflow, mathematicians <a href="http://mathoverflow.net/questions/251470/topology-and-the-2016-nobel-prize-in-physics/251590#251590">asked for a mathematical explanation</a>. So here is my go of an outline for people familiar with topology but not so much physics:<br /><br />Let me try to give a brief explanation: All this is in the context of Fermi liquid theory, the idea that you can describe the low energy physics of these kinds of systems by pretending they are generated by free fermions in an external potential. So, all you need to do is to solve the single particle problem for the external potential and then fill up the energy levels from the bottom until you reach the total particle number (or actually the density). It is tempting (and conventional) to call these particles electrons, and I will do so here, but of course actual electrons are not free but interacting. This "Fermi Liquid" explanation is just and effective description for long wavelength (the IR end of the renormalization group flow) where it turns out, that at those scales the interactions play no role (they are "irrelevant operators" in the language of the renormalization group).<br /><br />The upshot is, we are dealing with free "electrons" and the previous paragraph was only essential if you want to connect to the physical world (but this is MATH overflow anyway).<br /><br />Since the external potential comes from a lattice (crystal) it is invariant under lattice translations. So Bloch theory tells you, you can restrict your attention as far as solving the Schrödinger equation to wave functions living in the unit cell of the lattice. But you need to allow for quasi-periodic boundary conditions, i.e. when you go once around the unit cell you are allowed to pick up a phase. In fact, there is one phase for each generator of the first homotopy group of the unit cell. Each choice of these phases corresponds to one choice of boundary conditions for the wave function and you can compute the eigenvalues of the Hamiltonian for these given boundary conditions (the unit cell is compact so we expect discrete eigenvalues, bounded from below).<br /><br />But these eigenvalues depend on the boundary conditions and you can think of the as a function of the phases. Each of the phases takes values in U(1) so the space of possible phases is a torus and you can think of the eigenvalues as functions on the torus. Actually, when going once around an irreducible cycle of the torus not all eigenvalues have to come back to themselves, you can end up with a permutation it this is not really a function but a section of a bundle but let's not worry too much about this as generally this "level crossing" does not happen in two dimensions and only at discrete points in 3D (this is Witten's argument with the 2x2 Hamiltonian above).<br /><br />The torus of possible phases is called the "Brioullin zone" (sp?) by physicists and its elements "inverse lattice vectors" (as you can think of the Brioullin zone as obtained from modding out the dual lattice of the lattice we started with).<br /><br />Now if your electron density is N electrons per unit cell of the lattice Fermi Liquid theory asks you to think of the lowest N energy levels as occupied. This is the "Fermi level" or more precisely the graph of the N-th eigenvalue over the Bioullin zone. This graph (views as a hyper-surface) can have non-trivial topology and the idea is that by doing small perturbations to the system (like changing the doping of the physical probe or changing the pressure or external magnetic field or whatever) stuff behaves continuously and thus the homotopy class cannot change and is thus robust (or "topological" as the physicist would say).<br /><br />If we want to inquire about the quantum Hall effect, this picture is also useful: The Hall conductivity can be computed to leading order by linear response theory. This allows us to employ the Kubo formula to compute it as a certain two-point function or retarded Green's function. The relevant operators turn out to be related to the N-th level wave function and how it changes when we move around in the Brioullin zone: If we denote by u the coordinates of the Brioullin zone and by $\psi_u(x)$ the N-th eigenfunction for the boundary conditions implied by u, we can define a 1-form<br />$$ A = \sum_i \langle \psi_u|\partial_{u_i}|\psi_u\rangle\, du^i = \langle\psi_u|d_u|\psi\rangle.$$<br />This 1-form is actually the connection of a U(1) bundle and the expression the Kubo-formula asks us to compute turns out to be the first Chern number of that bundle (over the Brioullin zone).<br /><br />Again that, as in integer, cannot change upon small perturbations of the physical system and this is the explanation of the levels in the QHE.<br /><br />In modern applications, an important role is played by the (N-dimensional and thus finite dimensional) projector the subspace of Hilbert space spanned by the eigenfunctions corresponding to he N lowest eigenvalues, again fibered over the Brioullin zone. Then one can use K-theory (and KO-theory in fact) related to this projector to classify the possible classes of Fermi surfaces (these are the "topological phases of matter", as eventually, when the perturbation becomes too strong even the discrete invariants can jump which then physically corresponds to a phase transition).Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-39458583830332274852016-09-19T21:43:00.000+02:002016-09-19T21:43:06.273+02:00Brute forcing Crazy Game PuzzlesIn the 1980s, as a kid I loved my Crazy Turtles Puzzle ("Das verrückte Schildkrötenspiel"). For a number of variations, see <a href="http://www.geekyhobbies.com/the-crazy-game-puzzles-puzzled/">here</a> or <a href="http://www.penguin.com/static/packages/us/yr-microsites/crazygamesolution/index.php">here</a>.<br /><br />I had completely forgotten about those, but a few days ago, I saw a self-made reincarnation when staying at a friends' house:<br /><br /><div class="separator" style="clear: both; text-align: center;"><a href="https://4.bp.blogspot.com/-3EsTQ25UG2c/V-A8U8PBycI/AAAAAAAALK0/d7Wo4YqA95wxdatwCa6ZuR9_f69jA0ntgCLcB/s1600/IMG_0350%2B%25281%2529.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" height="320" src="https://4.bp.blogspot.com/-3EsTQ25UG2c/V-A8U8PBycI/AAAAAAAALK0/d7Wo4YqA95wxdatwCa6ZuR9_f69jA0ntgCLcB/s320/IMG_0350%2B%25281%2529.jpg" width="319" /></a></div><div class="separator" style="clear: both; text-align: center;"><br /></div><div class="separator" style="clear: both; text-align: left;"><br /></div>I tried a few minutes to solve it, unsuccessfully (in case it is not clear: you are supposed to arrange the nine tiles in a square such that they form color matching arrows wherever they meet).<br /><br />So I took the picture above with the plan to either try a bit more at home or write a program to solve it. Yesterday, I had about an hour and did the latter. I am a bit proud of the implementation I came up with and in particular the fact that I essentially came up with a correct program: It came up with the unique solution the first time I executed it. So, here I share it:<br /><br /><pre style="background-color: #001800; color: #55cc66;"><span style="color: #b96969;">#!</span><span style="color: #007997;">/usr/bin/perl</span><br /><br /><span style="color: #b96969;"># 1 rot 8</span><br /><span style="color: #b96969;"># 2 gelb 7</span><br /><span style="color: #b96969;"># 3 gruen 6</span><br /><span style="color: #b96969;"># 4 blau 5</span><br /><br />@karten <span style="color: #808030;">=</span> <span style="color: #808030;">(</span><span style="color: #778c77;">7151</span><span style="color: #808030;">,</span> <span style="color: #778c77;">6754</span><span style="color: #808030;">,</span> <span style="color: #778c77;">4382</span><span style="color: #808030;">,</span> <span style="color: #778c77;">2835</span><span style="color: #808030;">,</span> <span style="color: #778c77;">5216</span><span style="color: #808030;">,</span> <span style="color: #778c77;">2615</span><span style="color: #808030;">,</span> <span style="color: #778c77;">2348</span><span style="color: #808030;">,</span> <span style="color: #778c77;">8253</span><span style="color: #808030;">,</span> <span style="color: #778c77;">4786</span><span style="color: #808030;">)</span><span style="color: purple;">;</span><br /><br /><span style="color: #508050; font-weight: bold;">foreach</span> $karte<span style="color: #808030;">(</span><span style="color: #778c77;">0</span><span style="color: #808030;">..</span><span style="color: #778c77;">8</span><span style="color: #808030;">)</span> <span style="color: purple;">{</span><br /> $farbe<span style="color: #808030;">[</span>$karte<span style="color: #808030;">]</span> <span style="color: #808030;">=</span> <span style="color: #808030;">[</span><span style="color: #808030;">split</span><span style="color: #cc5555;"> </span><span style="color: maroon;">/</span><span style="color: maroon;">/</span><span style="color: #808030;">,</span>$karten<span style="color: #808030;">[</span>$karte<span style="color: #808030;">]</span><span style="color: #808030;">]</span><span style="color: purple;">;</span><br /><span style="color: purple;">}</span><br /><span style="color: #808030;">&</span>ausprobieren<span style="color: #808030;">(</span><span style="color: #778c77;">0</span><span style="color: #808030;">)</span><span style="color: purple;">;</span><br /><br /><span style="color: #508050; font-weight: bold;">sub</span> ausprobieren <span style="color: purple;">{</span><br /> <span style="color: #508050; font-weight: bold;">my</span> $pos <span style="color: #808030;">=</span> <span style="color: #400000;">shift</span><span style="color: purple;">;</span><br /><br /> <span style="color: #508050; font-weight: bold;">foreach</span> <span style="color: #508050; font-weight: bold;">my</span> $karte<span style="color: #808030;">(</span><span style="color: #778c77;">0</span><span style="color: #808030;">..</span><span style="color: #778c77;">8</span><span style="color: #808030;">)</span> <span style="color: purple;">{</span><br /> <span style="color: #508050; font-weight: bold;">next</span> <span style="color: #508050; font-weight: bold;">if</span> $benutzt<span style="color: #808030;">[</span>$karte<span style="color: #808030;">]</span><span style="color: purple;">;</span><br /> $benutzt<span style="color: #808030;">[</span>$karte<span style="color: #808030;">]</span> <span style="color: #808030;">=</span> <span style="color: #778c77;">1</span><span style="color: purple;">;</span><br /> <span style="color: #508050; font-weight: bold;">foreach</span> <span style="color: #508050; font-weight: bold;">my</span> $dreh<span style="color: #808030;">(</span><span style="color: #778c77;">0</span><span style="color: #808030;">..</span><span style="color: #778c77;">3</span><span style="color: #808030;">)</span> <span style="color: purple;">{</span><br /> <span style="color: #508050; font-weight: bold;">if</span> <span style="color: #808030;">(</span>$pos <span style="color: #808030;">%</span> <span style="color: #778c77;">3</span><span style="color: #808030;">)</span> <span style="color: purple;">{</span><br /> <span style="color: #b96969;"># Nicht linke Spalte</span><br /> $suche <span style="color: #808030;">=</span> <span style="color: #778c77;">9</span> <span style="color: #808030;">-</span> $farbe<span style="color: #808030;">[</span>$gelegt<span style="color: #808030;">[</span>$pos <span style="color: #808030;">-</span> <span style="color: #778c77;">1</span><span style="color: #808030;">]</span><span style="color: #808030;">]</span><span style="color: #808030;">-></span><span style="color: #808030;">[</span><span style="color: #808030;">(</span><span style="color: #778c77;">1</span> <span style="color: #808030;">-</span> $drehung<span style="color: #808030;">[</span>$gelegt<span style="color: #808030;">[</span>$pos <span style="color: #808030;">-</span> <span style="color: #778c77;">1</span><span style="color: #808030;">]</span><span style="color: #808030;">]</span><span style="color: #808030;">)</span> <span style="color: #808030;">%</span> <span style="color: #778c77;">4</span><span style="color: #808030;">]</span><span style="color: purple;">;</span><br /> <span style="color: #508050; font-weight: bold;">next</span> <span style="color: #508050; font-weight: bold;">if</span> $farbe<span style="color: #808030;">[</span>$karte<span style="color: #808030;">]</span><span style="color: #808030;">-></span><span style="color: #808030;">[</span><span style="color: #808030;">(</span><span style="color: #778c77;">3</span> <span style="color: #808030;">-</span> $dreh<span style="color: #808030;">)</span> <span style="color: #808030;">%</span> <span style="color: #778c77;">4</span><span style="color: #808030;">]</span> <span style="color: #808030;">!</span><span style="color: #808030;">=</span> $suche<span style="color: purple;">;</span><br /> <span style="color: purple;">}</span><br /> <span style="color: #508050; font-weight: bold;">if</span> <span style="color: #808030;">(</span>$pos <span style="color: #808030;">></span><span style="color: #808030;">=</span> <span style="color: #778c77;">3</span><span style="color: #808030;">)</span> <span style="color: purple;">{</span><br /> <span style="color: #b96969;"># Nicht oberste Zeile</span><br /> $suche <span style="color: #808030;">=</span> <span style="color: #778c77;">9</span> <span style="color: #808030;">-</span> $farbe<span style="color: #808030;">[</span>$gelegt<span style="color: #808030;">[</span>$pos <span style="color: #808030;">-</span> <span style="color: #778c77;">3</span><span style="color: #808030;">]</span><span style="color: #808030;">]</span><span style="color: #808030;">-></span><span style="color: #808030;">[</span><span style="color: #808030;">(</span><span style="color: #778c77;">2</span> <span style="color: #808030;">-</span> $drehung<span style="color: #808030;">[</span>$gelegt<span style="color: #808030;">[</span>$pos <span style="color: #808030;">-</span> <span style="color: #778c77;">3</span><span style="color: #808030;">]</span><span style="color: #808030;">]</span><span style="color: #808030;">)</span> <span style="color: #808030;">%</span> <span style="color: #778c77;">4</span><span style="color: #808030;">]</span><span style="color: purple;">;</span><br /> <span style="color: #508050; font-weight: bold;">next</span> <span style="color: #508050; font-weight: bold;">if</span> $farbe<span style="color: #808030;">[</span>$karte<span style="color: #808030;">]</span><span style="color: #808030;">-></span><span style="color: #808030;">[</span><span style="color: #808030;">(</span><span style="color: #778c77;">4</span> <span style="color: #808030;">-</span> $dreh<span style="color: #808030;">)</span> <span style="color: #808030;">%</span> <span style="color: #778c77;">4</span><span style="color: #808030;">]</span> <span style="color: #808030;">!</span><span style="color: #808030;">=</span> $suche<span style="color: purple;">;</span><br /> <span style="color: purple;">}</span><br /><br /> $benutzt<span style="color: #808030;">[</span>$karte<span style="color: #808030;">]</span> <span style="color: #808030;">=</span> <span style="color: #778c77;">1</span><span style="color: purple;">;</span><br /> $gelegt<span style="color: #808030;">[</span>$pos<span style="color: #808030;">]</span> <span style="color: #808030;">=</span> $karte<span style="color: purple;">;</span><br /> $drehung<span style="color: #808030;">[</span>$karte<span style="color: #808030;">]</span> <span style="color: #808030;">=</span> $dreh<span style="color: purple;">;</span><br /> <span style="color: #b96969;">#print @gelegt[0..$pos]," ",@drehung[0..$pos]," ", 9 - $farbe[$gelegt[$pos - 1]]->[(1 - $drehung[$gelegt[$pos - 1]]) % 4],"\n";</span><br /> <br /> <span style="color: #508050; font-weight: bold;">if</span> <span style="color: #808030;">(</span>$pos <span style="color: #808030;">=</span><span style="color: #808030;">=</span> <span style="color: #778c77;">8</span><span style="color: #808030;">)</span> <span style="color: purple;">{</span><br /> <span style="color: #508050; font-weight: bold;">print</span> <span style="color: #cc5555;">"Fertig!</span><span style="color: #aa3333; font-weight: bold;">\n</span><span style="color: #cc5555;">"</span><span style="color: purple;">;</span><br /> <span style="color: #508050; font-weight: bold;">for</span> $l<span style="color: #808030;">(</span><span style="color: #778c77;">0</span><span style="color: #808030;">..</span><span style="color: #778c77;">8</span><span style="color: #808030;">)</span> <span style="color: purple;">{</span><br /> <span style="color: #508050; font-weight: bold;">print</span> <span style="color: #cc5555;">"</span><span style="color: #cc5555;">$gelegt</span><span style="color: #808030;">[</span><span style="color: #cc5555;">$l</span><span style="color: #808030;">]</span><span style="color: #cc5555;"> </span><span style="color: #cc5555;">$drehung</span><span style="color: #808030;">[</span><span style="color: #cc5555;">$gelegt</span><span style="color: #808030;">[</span><span style="color: #cc5555;">$l</span><span style="color: #808030;">]</span><span style="color: #808030;">]</span><span style="color: #aa3333; font-weight: bold;">\n</span><span style="color: #cc5555;">"</span><span style="color: purple;">;</span><br /> <span style="color: purple;">}</span><br /> <span style="color: purple;">}</span> <span style="color: #508050; font-weight: bold;">else</span> <span style="color: purple;">{</span><br /> <span style="color: #808030;">&</span>ausprobieren<span style="color: #808030;">(</span>$pos <span style="color: #808030;">+</span> <span style="color: #778c77;">1</span><span style="color: #808030;">)</span><span style="color: purple;">;</span><br /> <span style="color: purple;">}</span><br /> <span style="color: purple;">}</span><br /> $benutzt<span style="color: #808030;">[</span>$karte<span style="color: #808030;">]</span> <span style="color: #808030;">=</span> <span style="color: #778c77;">0</span><span style="color: purple;">;</span><br /> <span style="color: purple;">}</span><br /><span style="color: purple;">}</span></pre><br />Sorry for variable names in German, but the idea should be clear. Regarding the implementation: red, yellow, green and blue backs of arrows get numbers 1,2,3,4 respectively and pointy sides of arrows 8,7,6,5 (so matching combinations sum to 9).<br /><br />It implements depth first tree search where tile positions (numbered 0 to 8) are tried left to write top to bottom. So tile $n$ shares a vertical edge with tile $n-1$ unless it's number is 0 mod 3 (leftist column) and it shares a horizontal edge with tile $n-3$ unless $n$ is less than 3, which means it is in the first row.<br /><br />It tries rotating tiles by 0 to 3 times 90 degrees clock-wise, so finding which arrow to match with a neighboring tile can also be computed with mod 4 arithmetic.Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com1tag:blogger.com,1999:blog-8883034.post-39113532392132865222016-06-20T22:12:00.001+02:002016-06-20T22:12:33.408+02:00Restoring deleted /etc from TimeMachineYesterday, I managed to empty the /etc directory on my macbook (don't ask how I did it. I was working on <a href="http://subsurface-divelog.org/">subsurface</a> and had written a perl script to move system files around that had to be run with sudo. And I was still debugging...).<br /><br />Anyway, once I realized what the problem was I did some googling but did not find the answer. So here, as a service to fellow humans googling for help is how to fix this.<br /><br />The problem is that in /etc all kinds of system configuration files are stored and without it the system does not know anymore how to do a lot of things. For example it contains /etc/passwd which contains a list of all users, their home directories and similar things. Or /etc/shadow which contains (hashed) passwords or, and this was most relevant in my case, /etc/sudoers which contains a list of users who are allowed to run commands with <a href="https://xkcd.com/149/">sudo</a>, i.e. execute commands with administrator privileges (in the GUI this shows as as a modal dialog asking you to type in your password to proceed).<br /><br />In my case, all was gone. But, luckily enough, I had a time machine backup. So I could go 30 minutes back in time and restore the directory contents.<br /><br />The problem was that after restoring it, it ended up as a symlink to /private/etc and user helling wasn't allowed to access its contents. And I could not sudo the access since the system could not determine I am allowed to sudo since it could not read /etc/sudoers.<br /><br />I tried a couple of things including a reboot (as a last resort I figured I could always boot in target disk mode and somehow fix the directory) but it remained in /private/etc and I could not access it.<br /><br />Finally I found the solution (so here it is): I could look at the folder in Finder (it had a red no entry sign on it meaning that I could not open it). But I could right click and select Information and there I could open the lock by tying in my password (no idea why that worked) and give myself read (and for that matter write) permissions and then everything was fine again.Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-24954675567200031522016-05-24T12:03:00.001+02:002016-05-25T09:25:38.082+02:00Holographic operator ordering?Believe it or not, at the end of this week I will speak at <a href="https://www-m5.ma.tum.de/Allgemeines/LQPWorkshop">a workshop on algebraic and constructive quantum field theory</a>. And (I don't know which of these two facts is more surprising) I will advocate holography.<br /><br />More specifically, I will argue that it seems that holography can be a successful approach to formulate effective low energy theories (similar to other methods like perturbation theory of weakly coupled quasi particles or minimal models). And I will present this as a challenge to the community at the workshop to show that the correlators computed with holographic methods indeed encode a QFT (according to your favorite set of rules, e.g. Whiteman or Osterwalder-Schrader). My [kudos to an anonymous reader for pointing out a typo] guess would be that this has a non-zero chance of being a possible approach to the construction of (new) models in that sense or alternatively to show that the axioms are violated (which would be even more interesting for holography).<br /><br />In any case, I am currently preparing my slides (I will not be able to post those as I have stolen far too many pictures from the interwebs including the holographic doctor from Star Trek Voyager) and came up with the following question:<br /><br /><blockquote class="tr_bq">In a QFT, the order of insertions in a correlator matters (unless we fix an ordering like time ordering). How is that represented on the bulk side?</blockquote><br />Does anybody have any insight about this?<br /><br /><div class="separator" style="clear: both; text-align: center;"><a href="http://www.giantfreakinrobot.com/wp-content/uploads/2014/06/helpmeobiwankenobi.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" src="http://www.giantfreakinrobot.com/wp-content/uploads/2014/06/helpmeobiwankenobi.jpg" height="136" width="320" /></a></div>Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com3tag:blogger.com,1999:blog-8883034.post-82510413377926125202016-04-21T14:55:00.000+02:002016-04-21T14:55:23.079+02:00The Quantum in Quantum ComputingI am sure, by now, all of you have seen Canada's prime minister <a href="https://www.youtube.com/watch?v=rRmv4uD2RQ4">"explain" quantum computers</a> at Perimeter. It's really great that politicians care about these things and he managed to say what is the standard explanation for the speed up of quantum computers compared to their classical cousins: It is because you can have superpositions of initial states and therefore "perform many operations in parallel".<br /><br />Except of course, that this is bullshit. This is not the reason for the speed up, you can do the same with a classical computer, at least with a probabilistic one: You can also as step one perform a random process (throw a coin, turn a Roulette wheel, whatever) to determine the initial state you start your computer with. Then looking at it from the outside, the state of the classical computer is mixed and the further time evolution also "does all the computations in parallel". That just follows from the formalism of (classical) statistical mechanics.<br /><br />Of course, that does not help much since the outcome is likely also probabilistic. But it has the same parallelism. And as the state space of a qubit is all of a Bloch sphere, the state space of a classical bit (allowing mixed states) is also an interval allowing a continuum of intermediate states.<br /><br />The difference between quantum and classical is elsewhere. And it has to do with non-commuting operators (as those are essential for quantum properties) and those allow for entanglement.<br /><br />To be more specific, let us consider one of the most famous quantum algorithms, <a href="https://en.wikipedia.org/wiki/Grover%27s_algorithm">Grover's database lookup</a>, There the problem (at least in its original form) is to figure out which of $N$ possible "boxes" contains the hidden coin. Classically, you cannot do better than opening one after the other (or possibly in a random pattern), which takes $O(N)$ steps (on average).<br /><br />For the quantum version, you first have to say how to encode the problem. The lore is, that you start with an $N$-dimensional Hilbert space with a basis $|1\rangle\cdots|N\rangle$. The secret is that one of these basis vectors is picked. Let's call it $|\omega\rangle$ and it is given to you in terms of a projection operator $P=|\omega\rangle\langle\omega|$.<br /><br />Furthermore, you have at your disposal a way to create the flat superposition $|s\rangle = \frac1{\sqrt N}\sum_{i=1}^N |i\rangle$ and a number operator $K$ that act like $K|k\rangle= k|k\rangle$, i.e. is diagonal in the above basis and is able to distinguish the basis elements in terms of its eigenvalues.<br /><br />Then, what you are supposed to do is the following: You form two unitary operators $U_\omega = 1 - 2P$ (this multiplies $|\omega\rangle$ by -1 while being the identity on the orthogonal subspace, i.e. is a reflection on the plane orthogonal to $|\omega\rangle$) and $U_s = 2|s\rangle\langle s| - 1$ which reflects the vectors orthogonal to $|s\rangle$.<br /><br />It is not hard to see that both $U_s$ and $U_\omega$ map the two dimensional place spanned by $|s\rangle$ and $|\omega\rangle$ into itself. They are both reflections and thus their product is a rotation by twice the angle between the two planes which is given in terms of the scalar product $\langle s|\omega\rangle =1/\sqrt{N}$ as $\phi =\sin^{-1}\langle s|\omega\rangle$.<br /><br />But obviously, using a rotation by $\cos^{-1}\langle s|\omega\rangle$, one can rotate $|s\rangle$ onto $\omega$. So all we have to do is to apply the product $(U_sU\omega)^k$ where $k$ is the ratio between these two angles which is $O(\sqrt{N})$. (No need to worry that this is not an integer, the error is $O(1/N)$ and has no influence). Then you have turned your initial state $|s\rangle$ into $|omega\rangle$ and by measuring the observable $K$ above you know which box contained the coin.<br /><br />Since this took only $O(\sqrt{N})$ steps this is a quadratic speed up compared to the classical case.<br /><br />So how did we get this? As I said, it's not the superposition. Classically we could prepare the probabilistic state that opens each box with probability $1/N$. But we have to expect that we have to do that $O(N)$ times, so this is essential as fast as systematically opening one box after the other.<br /><br />To have a better unified classical-quantum language, let us say that we have a state space spanned by $N$ pure states $1,\ldots,N$. What we can do in the quantum case is to turn an initial state which had probability $1/N$ to be in each of these pure states into one that is deterministically in the sought after state.<br /><br />Classically, this is impossible since no time evolution can turn a mixed state into a pure state. One way to see this is that the entropy of the probabilistic state is $\log(N)$ while it is 0 for the sought after state. If you like classically, we only have the observables given by C*-algebra generated by $K$, i.e. we can only observe which box we are dealing with. Both $P$ and $U_\omega$ are also in this classical algebra (they are diagonal in the special basis) and the strict classical analogue would be that we are given a rank one projector in that algebra and we have to figure out which one.<br /><br />But quantum mechanically, we have more, we also have $U_s$ which does not commute with $K$ and is thus not in the classical algebra. The trick really is that in this bigger quantum algebra generated by both $K$ and $U_s$, we can form a pure state that becomes the probabilistic state when restricted to the classical algebra. And as a pure state, we can come up with a time evolution that turns it into the pure state $|\omega\rangle$.<br /><br />So, this is really where the non-commutativity and thus the quantumness comes in. And we shouldn't really expect Trudeau to be able to explain this in a two sentence statement.<br /><br />PS: The actual speed up in the end comes of course from the fact that probabilities are amplitudes squared and the normalization in $|s\rangle$ is $1/\sqrt{N}$ which makes the angle to be rotated by proportional to $1/\sqrt{N}$. Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-86367287727361332082016-04-21T13:56:00.000+02:002016-04-21T13:56:13.874+02:00One more resuscitationThis blog has been silent for almost two years for a number of reasons. First, I myself stopped reading blogs on a daily basis as in open Google Reader right after the arXiv an checking what's new. I had already stopped doing that due to time constraints before Reader was shut down by Google and I must say I don't miss anything. My focus shifted much more to Twitter and Facebook and from there, I am directed to the occasional blog post, but as I said, I don't check them systematically anymore. And I assume others do the same.<br /><br />But from time to time I run into things that I would like to discuss on a blog. Where (as my old readers probably know) I am mainly interested in discussions. I don't write here to educate (others) but only myself. I write about something I found interesting and would like to have further input on.<br /><br />Plus, this should be more permanent than a Facebook post (which is gone once scrolled out of the bottom of the screen) and more than the occasional 160 character remark on Twitter.<br /><br />Assuming that others have adopted their reading habits in a similar way to the year 2016, I have set up <a href="https://ifttt.com/recipes">If This Than That</a> to announce new posts to FB and Twitter so others might have a chance to find them.Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-20727835141606217732014-05-23T16:15:00.000+02:002014-05-23T16:15:00.681+02:00Conference Fees for SpeakersListening to a podcast on open access I had an idea: Many conferences waive conference fees (which can be substantial) for invited speakers. But those are often enough the most senior people who would have the least difficulty in paying the fee from their budget or grant money. So wouldn't it be a good idea for conferences to offer to their invited speakers to instead waive the fee for a graduate student or junior post-doc of the speakers choice and make the speaker pay the fee from their grant (or reduce the fee by 50% for both)?<br /><br />Discuss!Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-74991781516766068172014-01-29T21:01:00.000+01:002014-01-29T21:01:01.382+01:00Questions to the inter webs: classical 't-Hooft-limit and path integral entanglementHey blog, long time no see!<br /><br />I am coming back to you with a new format: Questions. Let me start with two questions I have been thinking about recently but that I don't know a good answer to.<br /><br /><h4>'t Hooft limit of classical field equations</h4><div>The 't Hooft limit leads to important simplifications in perturbative QFT and is used for many discoveries around AdS/CFT, N=4 super YM, amplitudes etc etc. You can take it in its original form for SU(N) gauge theory where its inventor realized you can treat N as a parameter of the theory and when you do perturbation theory you can do so in terms of ribbon Feynman diagrams. Then a standard analysis in terms of Euler's polyhedron theorem (discrete version of the Gauss-Bonnet-theorem) shows that genus g diagrams come with a factor 1/N^g such that at leading order for large N only the planar diagrams survive.</div><div><br /></div><div>The argument generalizes to all kinds of theories with matrix valued fields where the action can be written as a single trace. In a similar vain, it also has a version for non-commutative theories on the Moyal plane.</div><div><br /></div><div>My question is now if there is a classical analogue of this simplification. Let's talk the classical equations of motion for SU(N) YM or any of the other theories, maybe something as simple as</div><div>d^2/dt^2 M = M^3 for NxN matrices M. Can we say anything about simplifications of taking the large N limit? Of course you can use tree level Feynman diagrams to solve those equations perturbatively (as for example I described <a href="http://homepages.physik.uni-muenchen.de/~helling/classical_fields.pdf">here</a>), but is there a non-perturbative version of "planar"?</div><div>Can I say anything about the structure of solutions to these equations that is approached for N->infinity?</div><div><br /></div><h4>Path Integral Entanglement</h4><div>Entanglement is <b>the</b> distinguishing feature of quantum theory as compared to classical physics. It is closely tied to the non-comutativity of the observable algebra and is responsible for things like the violation of Bell's inequality.</div><div><br /></div><div>On the other hand, we know that the path integral gives us an equivalent description of quantum physics, surprisingly in terms of configurations/paths of the classical variables (that we then have to take the weighted integral over) which are intrinsically commuting objects. </div><div><br /></div><div>Properties of non-commuting operators can appear in subtle ways, like the operator ordering ambiguity how to quantize the classical observable x^2p^2, should it be xp^2x or px^2p or for example (x^2p^2 + p^2x^2)/2? This is a true quantization ambiguity and the path integral has to know about it as well. It turns out, it does: When you show the equivalence of Schroedinger's equation and the path integral, you do that by considering infinitesimal paths and you have to evaluate potentials etc on some point of those paths to compute things like V(x) in the action. Turns out, the operator ambiguity is equivalent to choosing where to evaluate V(x), at the start of the path, the end, the middle or somewhere else.</div><div><br /></div><div>So far so good. The question that I don't know the answer to is how the path integral encodes entanglement. For example can you discuss a version of Bell's inequality (or similar like GHZ) in the path integral language? Of course you would have to translate the spin operators to positions .</div>Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com7tag:blogger.com,1999:blog-8883034.post-90425870797226114552012-11-06T11:57:00.000+01:002012-11-06T11:57:26.848+01:00A Few Comments On FirewallsI was stupid enough to agree to talk about <a href="http://inspirehep.net/record/1122534">Firewalls</a> in our strings lunch seminar this Wednesday without having read the paper (or <a href="http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A1122534">what other people say about them</a>) except for talking to Raphael Busso at the Strings 2012 conference and reading <a href="http://blogs.discovermagazine.com/cosmicvariance/2012/09/27/guest-post-joe-polchinski-on-black-holes-complementarity-and-firewalls/#more-8862">Joe Polichinski's guest post</a> over at the Cosmic Variance blog.<br /><br />Now, of course I had to read (some of) the papers and I have to say that I am confused. I admit, I did not get the point. Even more, I cannot understand a large part of the discussion. There is a lot of prose and very little formulas and I have failed to translate the prose to formulas or hard facts for myself. Many of the statements taken at face value do not make sense to me but on the other hand, I know the authors to be extremely clever people and thus the problem is most likely on my end.<br /><br />In this post, I would like to share some of my thoughts in my endeavor to decode these papers but probably they are to you even more confusing than the original papers to me. But maybe you can spot my mistakes and correct me in the comment section.<br /><br />I had a long discussion with Cristiano Germani on these matters for which I am extremely grateful. If this post contains any insight it is his while all errors are for course mine.<br /><br /><h3>What is the problem?</h3><div>I have a very hard time not to believe in "no drama", i.e. that anything special can happen at an event horizon. First of all, the event horizon is a global concept and its location now does in general depend on what happens in the future (e.g. how much further stuff is thrown in the black hole). So who can it be that the location of a anything like a firewall can depend on future events?</div><div><br /></div><div>Furthermore, I have never seen such a firewall so far. But I might have already passed an event horizon (who knows what happens at cosmological scales?). Even more, I cannot see a local difference between a true event horizon like that of a black hole and the horizon of an accelerated observer in the case of the Unruh-effect. That the later I am pretty sure I have crossed already many times and I have never seen a firewall.</div><div><br /></div><div>So I was trying to understand why there should be one. And whenever I tried to flesh out the argument for one they way I understood it it fell apart. So, here are some of my thoughts;</div><br /><h3>The classical situation</h3><div>No question, Hawking radiation is a quantum effect (even though it happens at tree level in QFT on curved space-time and is usually derived in a free theory or, equivalently, by studying the propagator). But apart from that not much of the discussion (besides possibly the monogamy of entanglement, see below) seems to be particular quantum. Thus we might gain some mileage by studying classical field theory on the space time of a forming and decaying black hole as given by the causal diagram:</div><table cellpadding="0" cellspacing="0" class="tr-caption-container" style="float: left; margin-right: 1em; text-align: left;"><tbody><tr><td style="text-align: center;"><a href="http://prime-spot.de/Bilder/BR/bhevap_l.jpg" imageanchor="1" style="clear: left; margin-bottom: 1em; margin-left: auto; margin-right: auto;"><img border="0" height="320" src="http://prime-spot.de/Bilder/BR/bhevap_l.jpg" width="230" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;"><span style="font-size: small; text-align: -webkit-auto;">A decaying black hole, image stolen from</span><a href="http://prime-spot.de/" style="font-size: medium; text-align: -webkit-auto;"> Sabine Hossenfelder</a><span style="font-size: small; text-align: -webkit-auto;">.</span></td></tr></tbody></table><div class="separator" style="clear: both; text-align: center;"><br /></div><div class="separator" style="clear: both; text-align: left;">Issues of causality a determined by the characteristics of the PDE in question (take for example the wave equation) and those are invariant under conformal transformations even if the field equation is not. So, it is enough to consider the free wave equation on the causal diagram (rather than the space-time related to it by a conformal transformation). </div><div class="separator" style="clear: both; text-align: left;"><br /></div><div class="separator" style="clear: both; text-align: left;">For example we can give initial data on I- (and have good boundary conditions at the r=0 vertical lines). At the dashed horizontal line, the location of the singularity, we just stop evolving (free boundary conditions) and then we can read off outgoing radiation at I+. The only problematic point is the right end of the singularity: This is the end of the black hole evaporation and to me it is not clear how we can here start to impose again some boundary condition at the new r=0 line without affecting what we did earlier. But anyway, this is in a region of strong curvature, where quantum gravity becomes essential and thus what we conclude should better not depend too much on what's going on there as we don't have a good understanding of that regime.</div><div class="separator" style="clear: both; text-align: left;"><br /></div><div class="separator" style="clear: both; text-align: left;">The firewall paper, when it explains the assumptions of complementarity mentions an S-matrix where it tries to formalize the notion of unitary time evolution. But it seems to me, this might be the wrong formalization as the S-matrix is only about asymptotic states and even fails in much simpler situations when there are bound states and the asymptotic Hilbert spaces are not complete. Furthermore, strictly speaking, this (in the sense of LSZ reduction) is not what we can observe: Our detectors are never at spatial infinity, even if CMS is huge, so we should better come up with a more local concept. <table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: 1em; margin-right: 1em; text-align: center;"><tbody><tr><td style="text-align: center;"><a href="http://4.bp.blogspot.com/-SdrmGhWvECs/UJePShS6UMI/AAAAAAAAKqo/A-qCDo0N_ss/s1600/causal_shadows.png" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img border="0" height="175" src="http://4.bp.blogspot.com/-SdrmGhWvECs/UJePShS6UMI/AAAAAAAAKqo/A-qCDo0N_ss/s400/causal_shadows.png" width="400" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;">Two regions M and N on a Cauchy surface C with their causal shadows</td></tr></tbody></table></div><div class="separator" style="clear: both; text-align: left;"><br /></div><div class="separator" style="clear: both; text-align: left;">In the case of the wave equation, this can be encoded in terms of domains of dependence: By giving initial data on a region of a Cauchy surface I determine the solution on its causal shadow (in the full quantum theory maybe plus/minus an epsilon for quantum uncertainties). In more detail: If I have two sets of initial data on one Cauchy surface that agree on a local region. Than the two solutions have to agree on the causal shadow of this region no matter what the initial data looks like elsewhere. This encodes that "my time-evolution is good and I do not lose information on the way" in a local fashion.</div><div class="separator" style="clear: both; text-align: left;"><br /></div><h3>States</h3><div>Some of my confusion comes from talking about states in a way that at least when taken at face value is in conflict with how we understand states both in classical and in better understood quantum (both quantum mechanics and quantum field theory) circumstances.<br /><br />First of all (and quite trivially), a state is always at one instant of time, that is it lives on a Cauchy surface (or at least a space-like hyper surface, as our space-time might not be globally hyperbolic), not in a region of space-time. Hilbert space, as the space of (pure) states thus also lives on a Cauchy surface (and not for example in the region behind the horizon). If one event is after another (i.e. in its forward light-cone) it does not make sense to say they belong to different tensor factors of the Hilbert (or different Hilbert spaces for that matter).<br /><br />Furthermore, a state is always a global concept, it is everywhere (in space, but not in time!). There is nothing like "the space of this observer". What you can do of course is restrict a state to a subset of observables (possibly those that are accessible to one observer) by tracing out a tensor factor of the Hilbert space. But in general, the total state cannot be obtained by merging all these restricted states as those lack information about correlations and possible entanglement.<br /><br />This brings me to the next confusion: There is nothing wrong with states containing correlations of space-like separated observables. This is not even a distinguishing property of quantum physics, as this happens all the time even in classical situations: In the morning, I pick a pair of socks from my drawer without turning on the light and put it on my feet. Thus I do not know which socks I am wearing, in particular, I don't know their color. But as I combined matching socks when they came from the washing machine (as far as this is possible given the tendency of socks going missing) I know by looking at the sock on my right foot what the color of the sock on my left foot is, even when my two feet are spatially separated. Before looking, the state of the color of the socks was a statistical mixture but with non-local correlations. And of course there is nothing quantum about my socks (even if in German "Quanten" is not only "quantum" but also a pejorative word for feet). This would even be true (and still completely trivial) if I had put one of my feet through an event horizon while the other one is still outside. This example shows that locality is not a property that I should demand of states in order to be sure my theory is free of time travel. The important locality property is not in the states, it is in the observables: The measurement of an observable here must not depend of whether or not I apply an operator at a space-like distance. Otherwise that would imply I could send signals faster than the speed of light. But it is the operators, not the states that have to be local (i.e. commute for spatial separation).<br /><br />If two operators, however, are time-like separated (i.e. one is after the other in its forward light cone), I can of course influence one's measurement by applying the other. But this is not about correlations, this is about influence. In particular, if I write something in my notebook and then throw it across the horizon of a black hole, there is no point in saying that there is a correlation (or even entanglement) between the notebook's state now and after crossing the horizon. It's just the former influencing the later.</div><br />Which brings us to entanglement. This must not be confused with correlation, the former being a strict quantum property whereas the other can be both quantum or classical. Unfortunately, you can often see this in popular talks about quantum information where many speakers claim to explain entanglement but in fact only explain correlations. As a hint: For entanglement, one must discuss non-commuting observables (like different components of a the same spin) as otherwise (by the GNS reconstruction theorem) one deals with a commutative operator algebra which always has a classical interpretation (functions on a classical space). And of course, it is entanglement which violates Bell's inequality or shows up in the GHZ experiment. But you need something of this complexity (i.e. involving non-commuting observables) to make use of the quantumness of the situation. And it is only this entanglement (and not correlation) that is "monogamous": You cannot have three systems that are fully entangled for all pairs. You can have three spins that are entangled, but once you only look at two they are no longer entangles (which makes quantum cryptography work as the eavesdropper cannot clone the entanglement that is used for coding).<br /><br />And once more, entanglement is a property of a state when it is split according to a tensor product decomposition of the Hilbert space. And thus lives on a Cauchy surface. You can say that a state contains entanglement of two regions on a Cauchy surface but it makes no sense to say to regions that are time-like to each other to be entangled (like the notebook before and after crossing the horizon). And therefore monogamy cannot be invoked with respect to also taking the outgoing radiation in as the third player.Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com6tag:blogger.com,1999:blog-8883034.post-88463238880568453532012-09-24T21:46:00.000+02:002012-09-24T21:47:13.873+02:00The future of blogging (for me) and in particular twitterAs you might have noticed, breaks between two posts here get bigger and bigger. This is mainly due to lack of ideas on my side but also as I am busy with other things (now that with Ella H. kid number two has joined the family but there is also a lot of <a href="http://www.theorie.physik.uni-muenchen.de/TMP">TMP</a> admin stuff to do).<br /><br />This is not only true for me writing blog posts but also about reading: Until about a year ago, I was using <a href="http://reader.google.com/">google reader</a> not to miss a single blog post of a list of about 50 blogs. I have completely stopped this and systematically read blogs only very occasionally (that is other than being directed to a specific post by a link from somewhere else).<br /><br />What I still do (and more than ever) is use facebook (mainly to stay in contact with not so computer affine friends) and of course twitter (you will know that I am <a href="http://www.twitter.com/atdotde">@atdotde</a> there). Twitter seems to be the ideal way to stay current on a lot of matters you are interested in (internet politics for example) while not wasting too much time given the 140 character limit.<br /><br />Twitter's only problem is that they don't make (a lot of) money. This is no problem for the original inventors of the site (they have sold their shares to investors) but the current owners now seem desperate to change this. From what they say they want to move twitter more to a many to one (marketing) communication platform and force users to see ads they mix among the genuine tweets.<br /><br />One of the key aspects of the success of twitter was its open API (application programmers interface): Everybody could write programs (and for example I did) that interacted with twitter so for example everybody can choose their favourite client program on any OS to read and write tweets. Since the recent twitter API policy changes this is no longer the case: A client can now have only 100,000 users (or if they already have more can double the number of users), a small number given the allegedly about 4,000,000 million twitter accounts. And there are severe restrictions how you may display tweets to your users (e.g. you are not allowed to use them in any kind of cloud service or mix them with other social media sites, i.e. blend them with Facebook updates). The message that this sends is clearly: "developers go away" (the idea seems to be to force users to use the twitter website and their own clients) and anybody who still invests in twitter developing is betting on a dead horse. But it is not hard to guess that in the long run this will also make the while twitter unattractive to a lot of (if not eventually all) their users.<br /><br />People (often addicted to twitter feeds) are currently evaluating alternatives (like <a href="http://app.net/">app.net</a>) but this morning I realized that maybe the twitter managers are not so stupid as they seem to be (or maybe they just want to cash in what they have and don't care if this ruins the service), there is still an alternative that would make twitter profitable and would secure the service in the long run: They could offer to developers to allow them to use the old API guidelines but for a fee (say a few $/Euros per user per month): This would bring in the cash they are apparently looking for while still keeping the healthy ecosystem of many clients and other programs. twitter.com would only be dealing with developers while those would forward the costs to their users and recollect the money by selling their apps (so twitter would not have to collect money from millions of users). <br /><br />But maybe that's too optimistic and they just want to earn advertising money NOW.Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0tag:blogger.com,1999:blog-8883034.post-48443041147952075922012-02-07T18:31:00.004+01:002012-02-07T18:31:46.182+01:00AdS/cond-matLast week, Subir Sachdev came to Munich to give three Arnold Sommerfeld Lectures. I want to take this opportunity to write about a subject that has attracted a lot of attention in recent years, namely applying AdS/CFT techniques to condensed matter systems like trying to write gravity duals for D-wave superconducturs or <a href="http://en.wikipedia.org/wiki/Pseudogap">strange metals</a> (it's surprisingly hard to find a good link for this keyword).<br /><br />My attitude towards this attempt has somewhat changed from "this will never work" to "it's probably as good as anything else" and in this post I will explain why I think this. I should mention as well that Sean Hartnoll has been essential in this phase transition of my mind.<br /><br /><div class="separator" style="clear: both; text-align: center;"><a href="http://upload.wikimedia.org/wikipedia/commons/a/a0/Bi2212_Unit_Cell.png" imageanchor="1" style="clear: right; float: right; margin-bottom: 1em; margin-left: 1em;"><img border="0" height="320" src="http://upload.wikimedia.org/wikipedia/commons/a/a0/Bi2212_Unit_Cell.png" width="129" /></a></div>Let me start by sketching (actually: caricaturing) what I am talking about. You want to understand some material, typically the electrons in a horribly complicated lattice like bismuth strontium calcium copper oxide, or <a href="http://en.wikipedia.org/wiki/BSCCO">BSCCO</a>. To this end, you come up with a five dimensional theory of gravity coupled to your favorite list of other fields (gauge fields, scalars with potentials, you name it) and place that in an anti-de-Sitter background (or better, for finite temperature, in an asymptotically anti-de-Sitter black hole). Now, you compute solutions with prescribed behavior at infinity and interpret these via Witten's prescription as correlators in your condensed matter theory. For example you can read off Green functions and (frequency dependent) conductivities, densities of state.<br /><br />How can this ever work, how are you supposed to guess the correct field content (there is no D-brane/string description anywhere near that could help you out) and how can you ever be sure you got it right?<br /><br />The answer is you cannot but it does not matter. It does not matter as it does not matter elsewhere in condensed matter physics. To clarify this, we have to be clear about what it means for a condensed matter theorist to "understand" a system. Expressed in our high energy lingo, most of the time, the "microscopic theory" is obvious: It is given by the Schrödinger equation for $10^23$ electrons plus as similar number of noclei feeling the Coulomb potential of the nuclei and interacting themselves with Coulomb repulsion. There is nothing more to be known about this. Except that this is obviously not what we want. These are far too many particles to worry about and, what is more important, we are interested in the behavior at much much lower energy scales and longer wave lengths, at which all the details of the lattice structure are smoothed out and we see only the effect of a few electrons close to the Fermi surface. As an estimate, one should compare the typical energy scale of the Coulomb interactions, the binding energies of the electrons to the nucleus (Z times 13.6 eV) or in terms of temperature (where putting in the constants equates 1eV to about 10,000K) to the milli-eV binding energy of Cooper pairs or the typical temperature where superconductivity plays a role.<br /><br />In the language of the renormalization group, the Coulomb interactions are the UV theory but we want to understand the effective theory that this flows to in the IR. The convenient thing about such effective theories is that they do not have to be unique: All we want is a simple to understand theory (in which we can compute many quantities that we would like to know) that is in the same universality class as the system we started from. Differences in relevant operators do not matter (at least to leading order).<br /><br />Surprisingly often, one can find free theories or weakly (and thus almost free) theories that can act as the effective theory we are looking for. BCS is a famous example, but Landau's Fermi Liquid Theory is another: There the idea is that you can almost pretend that your fermions are free (and thus you can just add up energies taking into account the Pauli exclusion principle giving you Fermi-surfaces etc) even though your electrons are interacting (remember, there is always the Coulomb interaction around). The only effect the interactions have, is to renormalize the mass, to deform the Fermi surface away from a ball and to change the hight of the jump in the T=0 occupation number. Experience shows that this is an excellent description in more than one dimension (that has the exception of the Luttinger liquid) and can probably traced back to the fact that a four-Fermi-interaction is non-renormalizable and thus invisible in the IR.<br /><br />Only, it is important to remember that the fields/particles in that effective theories are not really the electrons you started with but just quasi-particles that are build in complicated ways out of the microscopic particles carrying around clouds of other particles and deforming the lattice they move in. But these details don't matter and that is the point.<br /><br />It is only important to guess the effective theory in the same universality class. You never derive this (or: hardly ever). Following an exact renormalization group flow is just way beyond what is possible. You make a hopefully educated guess (based on symmetries etc) and then check that you get good descriptions. But only the fact, that there are not too many universality classes makes this process of guessing worthwhile.<br /><br />Free or weakly coupled theories are not the only possible guesses for effective field theories in which one can calculate. 2d conformal field theories are others. And now, AdS-technology gives us another way of writing down correlation functions just as Feynman-rules give us correlation functions for weakly coupled theories. And that is all one needs: Correlation functions of effective field theory candidates. Once you have those you can check if you are lucky and get evidence that you are in the correct universality class. You don't have to derive the IR theory from the UV. You never do this. You always just guess. And often enough this is good enough to work. And strictly speaking, you never know if your next measurement shows deviations from what you thought would be an effective theory for your system.<br /><br />In a sense, it is like the mystery that chemistry works: The periodic table somehow pretends that the electrons in atoms are arranged in states that group together like for the hydrogen atom, you get the same n,l,m,s quantum numbers and the shells are roughly the same (although with some overlap encoded in the <a href="http://en.wikipedia.org/wiki/Aufbau_principle">Aufbau principle</a>) as for hydrogen. This pretends that the only effect of the electron-electron Coulomb potential is to shield the charge of the nucleus and every electron sees effectively a hydrogen like atom (although not necessarily with integer charge Z) and Pauli's exclusion principle regulates that no state is filled more than once. One could have thought that the effect of n-1 electrons on the last is much bigger, after all, they have a total charge that is almost the same of the nucleous, but it seems, the last electron only sees the nucleus with a 1/r potential although with reduced charge.<br /><br />If you like, the only thing one should might worry about is that the Witten prescription to obtain boundary correlators from bulk configurations really gives you valid n-point functions of<i><b> </b>a<b> </b></i>quantum theory (if you feel sufficient mathematical masochism for example in the sense of Wightman) but you don't want to show that it is <i>the</i> quantum field theory corresponding to the material you started with.Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com1tag:blogger.com,1999:blog-8883034.post-66553343911503286262012-02-03T16:02:00.001+01:002012-02-03T16:02:51.466+01:00Write-upsNot much to say, but I would like to mention that, finally, we have been able two finalize two write-ups that I have announced here in the past:<br /><br />First, there are the notes of a block course that I have in the summer on how to fix some mathematicla lose ends in QFT (notes written by our students Mario Flory and Constantin Sluka):<br /><br /><br /><h1 class="title" style="background-color: white; font-family: 'Lucida Grande', helvetica, arial, verdana, sans-serif; font-size: x-large; line-height: 28px; margin-bottom: 0.5em; margin-left: 20px; margin-right: 0px; margin-top: 0.5em;"><a href="http://arxiv.org/abs/1201.2714">How I Learned to Stop Worrying and Love QFT</a></h1><div class="authors" style="background-color: white; font-family: 'Lucida Grande', helvetica, arial, verdana, sans-serif; line-height: 24px; margin-bottom: 0.5em; margin-left: 20px; margin-right: 0px; margin-top: 0.5em;"><a href="http://arxiv.org/find/math-ph,math/1/au:+Flory_M/0/1/0/all/0/1" style="text-decoration: none;">Mario Flory</a>, <a href="http://arxiv.org/find/math-ph,math/1/au:+Helling_R/0/1/0/all/0/1" style="text-decoration: none;">Robert C. Helling</a>, <a href="http://arxiv.org/find/math-ph,math/1/au:+Sluka_C/0/1/0/all/0/1" style="text-decoration: none;">Constantin Sluka</a></div><blockquote class="abstract" style="background-color: white; font-family: 'Lucida Grande', helvetica, arial, verdana, sans-serif; font-size: 14px; line-height: 19px; margin-bottom: 1.5em;">Lecture notes of a block course explaining why quantum field theory might be in a better mathematical state than one gets the impression from the typical introduction to the topic. It is explained how to make sense of a perturbative expansion that fails to converge and how to express Feynman loop integrals and their renormalization using the language of distribtions rather than divergent, ill-defined integrals.</blockquote><br />Then there are the contributions to a seminar on "<a href="https://wiki.physik.uni-muenchen.de/TMP/images/1/1b/Foundations.pdf">Foundations of Quantum Mechanics</a>" (including an introduction by your's truly) that I taught a year ago. From the contents:<br /><br /><br /><ol><li>C*-algebras, GNS-construction, states, (Sebastian)</li><li>Stone-von-Neumann Theorem (Dennis)</li><li>Pure Operations, POVMs (Mario)</li><li>Measurement Problem (Anupam, David)</li><li>EPR and Entanglement, Bell's Theorem, Kochen–Specker theorem (Isabel, Matthias)</li><li>Decoherence (Kostas, Cosmas)</li><li>Pointer Basis (Greeks again)</li><li>Consistent Histories (Hao)</li><li>Many Worlds (Max)</li><li>Bohmian Interpretation (Henry, Franz)</li></ol><div>See also the seminar's <a href="https://wiki.physik.uni-muenchen.de/TMP/index.php/Foundations_of_Quantum_Mechanics_Seminar_WS_10/11">wiki page</a>.</div><div><br /></div><div>Have fun!</div><h1 style="margin-bottom: 0px; margin-left: 0px; margin-right: 0px; margin-top: 0px; padding-bottom: 0.17em; padding-top: 0.5em;"><br /><span class="mw-headline" id="Possible_Literature" style="font-weight: bolder; line-height: 24px;"></span></h1><br />Robert Hellinghttps://plus.google.com/118220336522940810893noreply@blogger.com0